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Abstract:

It is a Preface to Volume 9:3/4 that has brought a renewed focus to the
role of truth conceptions in frameworks of semantics and logic. Jan
Wolenski is known due to his works on epistemological aspects of logic
and his systematization of semantic truth theory. He became the
successor and the worthy continuer of prominent Polish logicians: Alfred
Tarski and Kazimierz Ajdukiewicz. This volume is collected on the 80th
anniversary of Wolenski’s birth and draws together new research papers
devoted to judgments and truth. These papers take measure of the scope
and impact of Wolenski's views on truth conceptions, and present new
contributions to the field of philosophy and logic.
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“Abraham begat Isaac; and Isaac begat Jacob; and Jacob begat Judas and his brethren; and
Judas begat Phares and Zara of Thamar; and Phares begat Esrom; and Esrom begat Aram...”
(Matthew 1:2-3). It is the beginning of the Gospel according to Matthew. It is a known
sample of sacral genealogy in Christianity. Georg Wilhelm Friedrich Hegel (1770 — 1831)
showed that philosophical ideas have their own genealogy, too. Moreover, each actual
philosophical idea is nothing more than its true genealogy in the retrospective view or its long
history in the perspective view, i.e. each idea is a development and transition from the state an
sich (in itself) to the state fiir sich (for itself) [2] and it can be revealed only genealogically
from the end of transition process or historically from the beginning of transition process.

Later Paul-Michel Foucault (1926 — 1984) presented genealogy as necessary method
of philosophical analysis as such. According to him, each cultural or social phenomenon can
be philosophically investigated only through its genealogical reconstruction. He started to
distinguish between the epistemological level of knowledge presenting what is now and the
genealogical reconstruction of existences. The genealogical reconstruction was called by him
the “archaeological level of knowledge”. It is one of the core objectives of philosophy:
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(...) archaeology, addressing itself to the general space of knowledge, to its
configurations, and to the mode of being of the things that appear in it, defines
systems of simultaneity, as well as the series of mutations necessary and sufficient
to circumscribe the threshold of a new positivity [1, p. xxv].

A genealogical reconstruction of ideas or looking for an archaeological level of knowledge
can be found in logic, too. It means that logical ideas might be explicated through their
genealogical analysis as well. Each significant logical theorem has some preliminary steps
established by some proved propositions and these propositions constitute an inner history of
the given theorem. Furthermore, we can focus on some philosophical intuitions and
metatheoretical frameworks needed for formulating and proving this theorem. They also are a
part of genealogical reconstruction within this theorem. Hence, a thorough understanding of
logical statements implies an archaeological level of logic.

Jan Wolenski (also known as Jan Hertrich-Wolenski) was born 21 September 1940,
in the same year as my father. From 1958 to 1963 he studied law at the Jagiellonian
University and then from 1960 to 1964 philosophy at the same university. From the outset, his
interest to logic was accompanied by analyzing the archaeological level of Polish logical
tradition. Perhaps, it can be explained by his first law background — he tried to understand a
copyright status of logical ideas through a reconstruction of genealogical trees of logical
statements and concepts. He assembles a unique home library of logical works all his life and
he remembers the names of all Polish logicians in the history of Poland. He became the grand
master in explicating the archaeological level of Polish logic.

In the beginning of 20" century, the tradition of Polish logic was accumulated by the
Lviv-Warsaw School (its former name was the Lvov-Warsaw School, its current name in
Polish: Szkota Lwowsko-Warszawska). Its most famous members are presented by Kazimierz
Ajdukiewicz, Tadeusz Kotarbinski, Stanistaw Le$niewski, Jan Lukasiewicz, and Alfred
Tarski. Wolenski showed that the Lviv-Warsaw School was an analytical school similar to the
Vienna Circle in many respects [17]. In numerous papers, he reconstructed the archaeological
level of logic for this school [11], [12], [13]. In his edited volumes [8], [9], [21], he
popularized the history of this school among logicians. And in his monographs [14], [16], he
presented an exhaustive overview of the school. It is worth noting that in his recent project
‘Lexicon of Polish Logicians 1900 — 1939’ (Leksykon polskich logikow 1900-1939) supported
by the grant from the Ministry of Science and Higher Education of Poland
(0411/NPRH7/H30/86/2019 on the day of 02.10.2019), he is going to give a complete
genealogical analysis of Polish logical ideas from 1900 to 1939. It will be a wonderful pearl
of his many-years efforts in studying the history of Polish logic.

Wolenski proved that within the archaeological level of Polish logic, Alfred Tarski
(1901 — 1983) [10] is the most important logician. His semantic theory of truth [7], [19], [20],
on the one hand, was “inspired by the Aristotelian tradition in philosophy, as well as the non-
constructive style of working on the foundations of mathematics that was prevailed in Poland”
[17], i.e. this theory has a reach genealogy in fact, and, on the other hand, this theory has a
reach history after Tarski, too — many logicians follow this approach until now. An
appropriate genealogy and history, as well as a complete explication, of Tarskian
epistemological ideas are given in the following fundamental book of Jan Wolenski: [18].

Tarski paid attention that the concept of truth must be defined for a definite
formalized language L, but the definition itself should be formulated in the metalanguage ML
[17], [20]. In the meanwhile, the definition should be formally correct, materially adequate,
and satisfy a maximality of the set of truths in a given language L:



A sentence 4 of a language L is true if and only if it is satisfied by all infinite
sequences of objects taken from the universe of discourse [17].

The Tarskian semantic theory of truth is explicated by Wolenski in many papers and books
[15], [21], [22].

I have to confess that Wolenski's approach to genealogical analysis of logic inspired
me to formulate my own research program of archaeology of logic. In this program we focus
on studies of the history of early symbolic logic and its origin. According to these studies,
symbolic logic was established in Babylonia [3], [4], [5]. Then it was developed in two
concurrent branches: (1) within the Aramaic-Hebrew culture continued by the Talmud and
Talmudic middot (logical inference rules for the Talmudic hermeneutics); (2) within the
Greek logic presenting the Aristotelian syllogistic and the Stoic propositional logic. Then the
Stoic logic had many impacts on establishing Nyaya logic [6]. The point is that Nyaya
appeared in Gandhara in the 2nd century A.D. at the time of Kaniska the Great. At this time
the political elite remained Hellenized and the Greek language was official for more than 400
years before.

In this volume, there are collected new research papers devoted to judgments and
truth. These papers take measure of the scope and impact of Wolenski's views on truth
conceptions, and present new contributions to the field of philosophy and logic. In ‘Proof vs
Truth in Mathematics’, by Roman Murawski, relations between proofs and truth are analyzed.
In ‘The Mystery of the Fifth Logical Notion (Alice in the Wonderful Land of Logical
Notions)’, Jean-Yves Beziau discusses a theory presented in a posthumous paper by Alfred
Tarski entitled ‘What are logical notions?’. In ‘Idea of Artificial Intelligence’, Kazimierz
Trzesicki gets the trace back on the development of Lullus’s art, ars combinatoria, 1.e. the
author demonstrates a genealogical analysis of abstract machines. The paper ‘Conjunctive and
Disjunctive Limits: Abstract Logics and Modal Operators’, by Alexandre Costa-Leite and
Edelcio G. de Souza, introduces two concepts: conjunctive and disjunctive limits, to formalize
levels of modal operators. In ‘4 Judgmental Reconstruction of Some of Professor Wolenski’s
Logical and Philosophical Writings’, Fabien Schang concentrates on the nature of truth-
values and their multiple uses in philosophy to genealogically explicate different means of
using truth concepts. In ‘Reism, Concretism and Schopenhauer Diagrams’, Jens Lemanski
and Michal Dobrzanski showed that, according to Kazimierz Ajdukiewicz and Jan Wolenski,
there are two dimensions with which the abstract expression of reism can be made concrete:
the ontological dimension and the semantic dimension. In ‘Deontic Relationship in the
Context of Jan Wolenski’s Metaethical Naturalism’, Tomasz Jarmuzek, Mateusz Klonowski,
and Rafat Palczewski indicate how Jan Wolenski's non-linguistic concept of norm allows us
to clarify the deontic relationship between sentences and the given normative system. In ‘4
Note on Intended and Standard Models’ Jerzy Pogonowski discusses some problems
concerning intended, standard, and non-standard models of mathematical theories with
Wolenski's views on these issues. In ‘About Some New Methods of Analytical Philosophy.
Formalization, De-formalization and Topological Hermeneutics’, Janusz Kaczmarek
continues the characteristics of philosophical methods specific to analytical philosophy, which
were and are important for Jan Wolenski. In ‘Anti-foundationalist Philosophy of Mathematics
and Mathematical Proofs’, Stanistaw Krajewski shows some main features of real proofs,
such as being convincing, understandable, and explanatory. In ‘Necessity and Determinism in
Robert Grosseteste’s De libero arbitrio’ Marcin Trepczynski follows the genealogical
approach of Wolenski and demonstrates that Robert Grosseteste's theory is still relevant and
useful in contemporary debates, as it can provide strong arguments and enrich discussions,
thanks to the two-perspectives approach, which generates some positions on the spectrum of
determinism and indeterminism. In ‘Logical Consequence Operators and Etatism’, by



Wojciech Krysztofiak, there is presented the theory of logical consequence operators indexed
with taboo functions to describe logical inferences in the environment of forbidden sentences.
In ‘The Normative Permission and Legal Utterances’ Marek Zirk-Sadowski proves that
rejecting the existence of permissive norms and limitation of norms to prohibitions and
commands alone is possible only with reducing the idea of function.
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Prof. Jan Wolenski at awarding the title of Doctor Honoris Causa of Lodz
University (2020),
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Prof. Jan Wolenski meets Prof. Saul Kripke (2017),
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Prof. Jan Wolenski visits the monument ‘Broken Hearth’ installed on a former
Jewish cemetery in Minsk (Belarus) as a memorial tribute to the victims of
Nazism who died in a ghetto during the World War II (2016),

© Andrew Schumann



. @ Studia Humana
Volume 9:3/4 (2020), pp. 10—18
$ scien d O ) DOI: 10.2478/sh-2020-0025
studia humana

QUARTERLY JOURNA!

Proof vs Truth in Mathematics
Roman Murawski

Adam Mickiewicz University
Uniwersytetu Pozneskiego 4 Street
61-614 Pozna Poland

e-mait rmur@amu.edu.pl

Abstract

Two crucial concepts dhe methodology and philosophy of mathematics
are considered: proof and truth. We distinguistwbet informal proofs
constructed by mathematicians in their researclttioea and formal
proofs as defined in the foundations of mathemati@n
metamathematics). Their role, features and interections are
discussed. They are confronted with the conceptutth in mathematics.
Relations between proofs and truth are analysed.

Keywords formal proof, informal proof, truth, mathematickgic,
incompleteness, Jan Wakki.

1. Introduction

Concepts of proof and truth play an important riole metamathematics, especially in the
methodology and the foundations of mathematicsoBrdorm the main method of justifying
mathematical statements. Only statements that hege proved are treated as belonging to
the corpus of mathematical knowledge. Proofs aeel s convince the readers of the truth of
presented theorems. But what is a proof? What doegan in mathematics that a given
statement is true? What is truth (in mathematics)?

In mathematical research practice proof is ausege of arguments that should
demonstrate the truth of the claim. Of course,ipadr arguments used in a proof depend on
the situation, on the audience, on the type ofamletc. Hence the concept of proof has in
fact a cultural, psychological and historical cltéea In practice mathematicians generally
agree on whether a given argumentation is a pidofe difficult is the task of defining a
proof as such. Beside the concept of proof usedsearch practice there is a concept of proof
developed by logic. What are the relations betwtbese two concepts? What roles do they
play in mathematics?

On the other hand the concept of truth belooghé fundamental concepts that have
been considered in epistemology since ancient ®re€here were many attempts to define
this vague concept. The classical definition (atteid to Aristotle) says that a statement is true
if and only if it agrees with the reality, or — @Bomas Aquinas put it: “Veritas est adequatio
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intellectus et rei, secundum quod intellectus disge quad est vel non esse quod non Bst” (
veritate 1, 2).

But what does it mean that a mathematical stameifior example: “2 + 2 = 4”) agrees
with the reality? With what reality? One can answ&/ith mathematical reality?” But what
is mathematical reality? And we come here to ondhef fundamental problems of the
ontology of mathematics: where and how do mathemalatibjects exist? Is the mathematical
universe a reality or an artifact?

2. Proof in Mathematics: Formal vsInformal

Mathematics was and still is developed in an infariway using intuition and heuristic
reasonings — it is still developed in fact in tipéris of Euclid (or sometimes of Archimedes)
in a quastaxiomatic way. Moreover, informal reasonings appeat only in the context of
discovery but also in the context of justificatidkny correct methods are allowed to justify
statements. Which methods are correct is decidedoractice by the community of
mathematicians. The ultimate aim of mathematicstas provide correct proofs of true
theorems” [2, p. 105]. In their research practicathematicians usually do not distinguish
concepts “true” and “provable” and often replacenthby each other. Mathematicians used to
say that a given theorem holds or that it is tra@ aot that it is provable in such and such
theory. It should be added that axioms of thedbieisg developed are not always precisely
formulated and admissible methods are not precigesgribed.

Informal proofs used in mathematical research pragblay various roles. One can
distinguish among others the following roles (di, [7]):

(1) verification,

(2) explanation,

(3) systematization,

(4) discovery,

(5) intellectual challenge,

(6) communication,

(7) justification of definitions.
The most important and familiar to mathematiciamghe first role. In fact only verified
statements can be accepted. On the other handagtrould not only provide a verification
of a theorem but it should also explain why dodwoitl. Therefore mathematicians are often
not satisfied by a given proof but are looking feew proofs which would have more
explanatory power. Note that a proof that verifeeheorem does not have to explain why it
holds. It is also worth distinguishing betweengisothat convince and proofs that explain.
The former should show that a statement holds tuesand can be accepted, the latter — why
it is so. Of course there are proofs that both swesand explain. The explanatory proof
should give an insight in the matter whereas thevioeing one should be concise or general.
Another distinction that can be made is the disiomc between explanation and
understanding. In the research practice of matheraas simplicity is often treated as a
characteristic feature of understanding. Therefase(s.-C. Rota writes: “[i]t is an article of
faith among mathematicians that after a new theasediscovered, other, simpler proof of it
will be given until a definitive proof is found” & p. 192].

It is also worth quoting in this context Aschbacthio wrote:

The first proof of a theorem is usually relativelymplicated and unpleasant. But
if the result is sufficiently important, new appcbas replace and refine the
original proof, usually by embedding it in a morepkisticated conceptual
context, until the theorem eventually comes to iesved as an obvious corollary
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of a larger theoretical construct. Thus proofsaraeans for establishing what is
real and what is not, but also a vehicle for angvat a deeper understanding of
mathematical reality [1, p. 2403].

As indicated above a concept of a “normal” prooddiby mathematicians in their research
practice (we called it “informal” proofs) is in fagague and not precise. In the 19th century
there appeared a new trend in the philosophy ohemaatics and in the foundations of it
whose aim was the clarification of basic mathenahttoncepts, especially those of analysis
(cf. works by Cauchy, Weierstrass, Bolzano, Ded#ki®ne of the drivers of this trend was
the discovery of antinomies in set theory (due agnathers to C. Burali-Forte, G. Cantor, B.
Russell) and of semantical antinomies (among othgrs. D. Berry and K. Grelling). All
those facts forced the revision of fundametal cpteef metamathematics.

One of the formulated proposals was the progranom®avid Hilbert and the
formalism based on it. Hilbert's main aim was tatjty mathematics developed so far, in
particular to show that mathematics using the cpinoé an actual infinity is consistent and
secure. To achieve this aim Hilbert proposed toettgwv a new theory called proof theory
(Beweistheorig It should be a study of proofs in mathematidsowever not of real proofs
constructed by mathematicians but of formal prodfse latter played a fundamental role in
Hilbert's programme. Hilbert proposed to formalaktheories of the entirety of mathematics
and to prove the consistency of them. Note thadlidenot want to replace the mathematics
developed by mathematicians by formalized theori¢ise formalization was for him only a
methodological tool that should enable the studghebries as such.

To formalize a theory one should first fix a syribdormal language with formal
rules of constructing formulas in it, then fix appriate axioms expressed in this language as
well as accepted rules of inference which agairushbave an entirely formal and syntactic
character. A proof (exactly: formal proof) of arfmula¢ in such a theory is now a sequence
of formulaso, ¢2, ... , ¢n such that the last member of the sequence ®thailae and all
members of it either belong to the set of presuasadms or are consequences of previous
members of the sequence according to one of theptaat rules of inference. Observe that
this concept of a formal proof has a syntactic abr and does not refer to any semantical
notions such as meaning or interpretation.

Note that formalization is connected also with tldea of mathematical rigor.
Detlefsen [6, p. viii] writes:

[W]ith the vigorous development of techniquesfofmalizationthat has taken

place in this [i.e., 20th century — my remark, R.&entury, demands for rigor
have increased to a point where it is now the ragyorthodoxy to require that, to
be genuine, a proof must be formalizable. This eashon formalization is based
on the belief that the only kinds of inferencesnuditely to be admitted into

mathematical reasoning dogical inferences [. . .].

Comparing the usual proofs of mathematical reseprahbtice (informal proofs) and formal
proofs one can see that both types of proofs coobisteps of deduction. They differ by the
properties of those steps. According to Hamami @@ can distinguish here three types of
differences: formality, generality and mechanigalitnformal inferences are meaning
dependent, matter dependent and content dependhemasvformal inferences are meaning,
matter and content independent. Hamami [10, p. @r@¢s: “To say that logical inference is
formal is to say that it is governed by rules of inferemd@ch only depend on the logical
form of premisses and conclusion, and not on tineaning, matter, or content.”
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Tarski [25, p. 187] said: “[T]he relation of follomg logically is completely
independent of the sense of the extra-logical @mstoccurring in the sentences among
which this relation obtains [...]."

Informal inferences are non-general wheras foromas are general. This means in
particular that the former are topic-specific, abjmatter dependent and domain dependent,
and the latter are topic-neutral, subject matter @mmain independent. Detlefsen [5, p. 350]
wrote in connection with this:

The mathematician’s inferences stem from and refieknowledge of the local
“architecture” (Poincaré’s term) of the particulsmbject with which they are
concerned, while those of the logician represeny @nglobally valid, topic-
neutral (and, therefore, locally insensitive!) foofrknowledge.

Hamimi [10] explains that the claim that logicafdrence is general means in particular that
“Iit is governed by rules of inference that generally applicablei.e., that are applicable to
propositions — premisses and conclusions — belgrigirany and every topic, subject matter,
or domain” [10, pp. 684-685].

The last difference between informal and formadgbs distinguished by Hamimi is
the property of mechanicality: informal ones arendinoechanical and formal ones —
mechanical. What does it mean is explained by dleviing quotations. Kreisel [16, p. 21]
writes:

Mathematical reasoning, except in the ‘limiting'seaof numerical computations,
does not present itself to us as the execution efhanical rules [. . .] The
connection between reliability and the possibilagfy mechanical checking is
usually, and somewhat uncritically, taken for geaht

And Hamimi [10, p. 695] says: “To say that logig#flerence isnechanicals to say that it is
governed by rules of inference that are mechanical

One can distinguish here two senses in which lbgiages of inference are
mechanical: mechanical applicability and mecharcbalckability.

Add at the end of this section that the concepa édrmal proof enables us to study
mathematical theories as theories, to investigata properties, etc. It makes possible the
entirety of metamathematics. However, the followqgestion arises: what are the relations
between formal and informal proofs. Recall that fet one is a practical notion of a
semantical character, not having a precise dedmitThe latter is a theoretical concept of a
syntactical character used in logical studies. Mtaticians are usually convinced that every
“normal”, i.e., informal mathematical proof can bensformed into a formalized one,
however there are no general rules describingthaacan and should be done. This thesis is
sometimes called Hilbert's thesis. Barwise [3] werdt[T]he informal notion of provable
used in mathematics is made precise by the forrotibm provable in first-order logic
Following a sug[g]estion of Martin Davis, we referthis view adilbert’'s Thesis’

In fact a formalization of an informal proof regesr often some original and not so
obvious ideas.

3. Truth in Mathematics
We indicated above that “normal” mathematicians. (inathematicians not being logicians or

specialists in the foundations of mathematics) do distinguish in their research practice
between provability (in the broad sense) and tritbreover, those two concepts are usually
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identified in practice. This was done also by folisia* Godel wrote in a letter of 7th March

1968 to Hao Wang [cf. 29, p. 10]: “[...] formalistensidered formal demonstrability to be an
analysisof the concept of mathematical truth and, therefoeee of course not in a position to
distinguishthe two.”

Note that “mathematical truth” should be understdoete in an intuitive way.
Moreover, the informal concept of truth was not ocoomly accepted as a definite
mathematical notion in Hilbert's and Gddel's tinehere was also no definite distinction
between syntax and semantics. This explains atsepime sense, why Hilbert preferred to
deal in his metamathematics solely with forms afrfolas, using only finitary reasonings
which were considered to be secure — contrary toaséical reasonings which were non-
finitary (sometimes called: infinitary) and conseqtly not secure.

The precise definition of truth was given by Targk his famous papePojecie
prawdy w gzykach nauk dedukcyjny¢p4]. Referring to the classical Aristotle’s defian
he attempted to make more precise the concepuibf with respect to formalized languages.
In such languages “the sense of every expressianambiguously determined by its form”
[27, p. 186].

Tarski defined the concept of truth by using thaaept of satisfaction, more exactly,
satisfaction of a formula on a valuation by a giweterpretation of primitive notions of the
considered language, hence in a given structurs. ddfinition refers to the so called
convention (T) according to which the statementoi8rs white” is true if and only if snow is
white. In fact Tarski did not give a definition ¢futh but defined only the class of true
sentences (of a given language).

Tarski’s definition has an infinitary characterhetinfinity appears in the reference to
infinite sequences of elements of the considenedttsire (valuations) as well as in the case of
satisfaction of formulas with quantifiers. It dogst go beyond the extensional adequacy and
does not explain the essence of the truth and iofjldeue. It relativizes also the concept of
truth to a given structure or domain.

In the above mentioned paper [24] Tarski formulatdgo the theorem on the
undefinability of truth. It says that the concceptruth for given formalized language cannot
be definied in this language itself — to do thisrenpowerful means are necessary. In other
words: the set of sentences true in a given streatinot definable in it (though in some
cases it is definable with parameters). Tarsknidated this theorem as Theorem I, poft (
[cf. 26, p. 247F “[A]ssuming that the class of all provable senesof the metatheory is
consistent, it is impossible to construct an adegukefinition of truth in the sense of
convention T on the basis of the metatheory.”

One of the consequences of Tarski's theorem igatttethat in order to construct truth
theory, for example, for the language of the arghmof natural numbers (hence a theory of
finite entities) one should apply more powerful mgan fact the infinity. In other words: the
concept of an arithmetical truth is not arithmdticdefinable. Generally: semantics needs the
infinity! It indicates also the gap between the tagtical concept of a (formal) proof and
(formal) provability on the one side and the conagftruth. In fact, for example, the set of
true arithmetical sentences is not definable inldmguage of arithmetics whereas the set of
provable sentences (theorems) of arithmetic ihraetically definable, even more: it is
definable by a simple formula (more exactly: byenfula with one existential quantifier and
logical connectives as well as eventually boundedntgifiers). Hence one can say that the
concept of truth transcends all syntactical means.

The indicated difference between the (definabdtythe concept of) provability and
(the undefinability of the concept of) truth wae tkey reason for the famous incompleteness
theorems proved by Gddel [8]. G6del wrote on hgcalvery in a draft reply to a letter dated
27th May 1970 from Yossef Balas, then a studetit@tUniversity of Northern lowa [30, pp.
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84-85] and indicated there that it was preciseby rieicognition of the contrast between the
formal definability of provability and the formalndefinability of truth that led him to his
discovery of incompleteness. The first incomplessneéheorem implies that in every
consistent theory containing the arithmetic of r@taumbers there are undecidable (i.e. that
can neither be proved nor disproved) statemergsich that one formula of the parand
none is satisfied/true in the intended (standard) madehe theory. It shows that (formal)
provability is not the same as truth! However bdtlese concepts are connected by the
completeness theorem stating that a statemémnia theorem of a theoflyif and only ifg is
true ineverymodel of T. And theories usually possess (infinitely) manyisias models — not
only the intended one (called: standard). So we hiaat:

1. if a formulag is provable in the theory then it is true in every model @t hence also in
the intended model af,

2. it is not true that for any formulg if ¢ is true in the intended (standard) modeT dhen
it is provable inT.

Add that when “normal” mathematicians are sayirgf #n given sentengg is true then they
have in mind that it is true in the intended (stnadl model.

One should mention also another phenomenon. Asatedl above the concept of
truth/true sentence for a given languages not definable in the languageitself. However
partial concepts of truth for formulas bfare definable ir.. More exactly: if one considers
only formulas ofL with a given maximal number of quantifiers (thssim fact a restiction of
the complexity of a formula) then the conceptsatissaction and truth for such formulas of a
languagd. are definable . It can be proved that the definition of the Saiition predicate
for formulas with maximallk quantifiers is a formula witk quantifiers, i.e., a formula of the
same degree of complexity. Details can be fourmlimmonograph [18].

The concept of truth/true formula can be invesédaalso by mathematical, more
exactly: by axiomatic-deductive methods. Conditidosnulated in Tarski’'s definition of
truth can be treated as axioms characterizing rib@igate of being satisfied and true. Such an
approach has been studied in detail for the caswithimetic of natural numbers — cf. for
example [17] and [21].

Results obtained by described investigations shioat not for every model of
arithmetic one can define a concept of satisfacéind truth on it having natural properties
assumed and required by Tarski’'s definition. A 1sseey condition is here the property that
the model should be recursively saturdtédiditional properties of a model must be assumed
if one requires that the concept of truth uporiverg model have some useful (and natural)
properties like being full (i.e., deciding the truaf every formula on any valuation) or being
inductive (this property means that the inductiom@ple holds not only with respect to
formulas of the language of arithmetic but alsodarextended language augmented by the
satisfaction/truth predicate).

It also turns out that if a concept of satisfactand truth (called a satisfaction cl3ss
for a given structure can be defined then it camldr@e in many mutually inconsistent ways,
i.e., if there exists a satisfaction class on tledeh then there exist many such satisfaction
classes. This shows that the axiomatic charaet#siz of the concept of satisfaction and truth
based on Tarski’s definition is not complete andjue, that Tarski’'s conditions (treated as
axioms) are too weak. This phenomenon can be retnbyeallowing more powerful — for
example set-theoretical — means. All this showsctmaplexity of the concept of truth.

We indicated above the gap between provability syndactical concepts on the one
hand and satisfaction/truth and semantical conceptthe other. However it turns out that
the concept of truth can be (in a certain senggaced by the concept of consistency (hence:
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a syntactical concept) in the so calledogic (it is a generalization of the usual claaslogic
obtained by admitting the so callegtrule and reasonings of infinite length) and by the
transfinite inductioff. This confirms the thesis that semantical concepth as satisfaction
and truth require infinitary means. Such concepts be expressed or replaced by richer
syntactical ones, however, this requires the reasign from the requirement of being finitary,
in particular from the natural requirement thatragh must have a finite length and can refer
only to finitely many assumptions.

4. Conclusion

In research practice mathematicians do not fix@madot restrict allowed methods of proof —
any correct method is practically allowed. A matlaégian wants to know what properties
the considered and investigated structure (intestiedture/model, standard structure/model)
has or whether a particular property is true/hahdghis structure. She/he is not interested in
the problem of whether this property can be deddiced a certain given and restricted set of
axioms. Therefore, for example, a specialist in bentheory who investigates the structure
of the natural numbers (i.e., the structuxge § +, [J0) whereN is the set {0, 1, 2, 3, ...]$
denotes the successor function, + amtknote, resp., addition and multiplication of maku
numebrs and O denotes the distinguished elemefgdcatero®) is not working in the
framework of a fixed axiomatized formal system oithemetic but is using any correct
mathematical methods in order to decide whethevrsidered property is true/holds in the
investigated structure (in the intended, standaaotleh of arithmetic of natural numbers).
Consequently she/he does not hesitate to use egthods of complex analysis (as is done in
the analytic numer theory) if only they can be ubef deciding the considered problem.

The informal and vague concept of proof used byheraaticians in their research
practice can be made precise by the concept ahdioproof. The latter makes possible exact
metamathematical investigations of mathematicabriee — more exactly of their formal
counterparts (and not of real theories considegethbrmal” mathematicians). However the
formal concept of proof (with precisely descrilmd restricted rules of inference) as well as
the very concept of formalized theory based draite some limitations indicated by Gddel's
incompleteness theorems. On the other hand thespreoncept of satisfaction and truth
relativizes truth to a given structure/interpretati The concept of formal proof is adequate
with respect tall models of a considered theory (as the completdhessem states) and not
only to the truth in the intended/standard struetll this implies that metamathematical
studies of proofs, structures, theorems and theaasi® not exact counterparts of what
mathematicians are really doing in their researelttre, they are in fact idealizations of the
real practice.

Let us finish our considerations by quating AlffEarski who in the paper “Truth and
proof” wrote:

Proof is still the only method used to ascertaim tifuth of sentences within any
specific mathematical theory. [...] The notion ofraet sentence functions thus as
an ideal limit which can never be reached but whightry to approximate by
gradually widening the set of provable sentences] [There is no conflict
between the notions of truth and proof in the demelent of mathematics; the
two notions are not at war but live in peacefubastence [27, p. 77].
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Notes

1. For the development of the concept of truth seeeéhi [31]

2. For more on proofs in mathematics and their roke @ example, Murawski [22].

3. Cf. Kahle [11].

4. For the development of the process of distinguigltioncepts of provability and truth see,
for example, Murawski [19] and [20].

5. Add that in the footnote Tarski explicitly statést his proof of this theorem uses Gédel’s
method of arithemtization of syntax and his metlbbdliagonalization, however he stresses
that he obtained his result independently.

6. For definition see for example Kaye [12].

7. The concept of a satisfaction class was introdusdgdrajewski [15] and studied among
others by Roman Kossak, Henryk Kotlarski, Staniskaajewski, Alistair Lachlan, Roman
Murawski, Zygmunt Ratajczyk.

8. Cf. Kotlarski and Ratajczyk [13] as well as [14].
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0. An Original Idea not to be Found in Logical Textbooks

The present paper is based on a posthumous pieCkatski entitled “What are logical
notions?” [47]. Alfred Tarski (1901 — 1983) is th®st prominent logician of the ®@entury
together with Kurt Godel (1906 — 1978). Everyonieiasted in logic has heard of him.

However, the theory dbgical notionsas presented here by Tarski is not something in
the mainstream. This theory does not appear inlegigal textbook! How to explain this
paradox?

Tarski had a great many original ideas. Although is very famous among
philosophical logicians for his theory of truth,daamong mathematical logicians for the
development of model theory, many of his ideaswaorks are still not well-known.

TheCollected Paper®f Tarski (1921 — 1979), prepared by Steven Giartt Ralph
McKenzie, were published in 1986 by Birkhauseranrfvolumes of about 700 pages each.
These volumes contain mostly photographic copieth@fpapers in the original language in
which they were written: French, German, Polish,glBsh, without translation and
presentation.

At the end of the 1920s, Tarski developed therthef the consequence operator, and
for many years this theory was hardly known outsifidPoland. The idea of this theory
appeared for the first time in a two-page papetiphéd in French in Poland in 1929 [43]. It
was translated into English by Robert Purdy and dggmunt only in 2012, and it was
published with a presentation by Jan Zygmunt in&hthology of Universal Logif58].2

In addition to papers, Tarski also published sdimeks. His famountroduction to
Logic and to the Methodology of Deductive Scierjdd$, which was translated into many
languages, can still be considered, after nearty @antury, one of the best introductions to
logic for teaching the subject. His last book wasagitten with Steven Givafhiand published
after his deathA formalization of set theory without variablg®]. It is also outside the main
strearrg of the present logical theories, and ielated to the work of Ernst Schroder (1841 —
1902):

The expression “logical notions” is not standakdmore standard way of speaking
would be “logical concepts”. And if we have a loak a textbook of logic and/or an
encyclopedia, we will find as basic “stuffs” reldtéo logic, things like connectives, truth-
tables, quantifiers, variables, constants, proaifference, deduction, completeness,
incompleteness’..

If you speak about “diversity”, one will imagin@u are talking about politics or
biology, not about a logical notion. But in this8Bpaper Tarski considers “diversity” to be a
fundamental logical notion. What kind of diversigyhe talking about?

In the present paper we will investigate and filahese logical notions. Our paper is
written for a large audience and can be understpogeople who have little or even no
knowledge of logic, showing that it is possiblego directly to the heart of logic without
much sophistry.

1. Logical Notions according to Tarski and Lindenbaum
in the Per spective of a Childlike M ethodology

In “What are logical notions?” Tarski proposes #fige logical notions as those invariants
under any one-to-one transformation, somethingraegmts as a generalization of an idea of
Felix Klein (1849 — 1925), connected to the soezhliErlangen program”.

Tarski presented two main lectures on this topic:
* May 16, 1966, at Bedford College, the University.ohdon, UK.
« April 20, 1973, at the State University of New YakBuffalo, USA’
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The paper “What are logical notions?” is relatedthiese talks and the final version was
prepared by John Corcoran who attended the se@dkdTarski approved the paper but it
was published only posthumously, in 1986 in thenalHistory and Philosophy of Logic
Corcoran is a famous scholar who wrote the extelietroduction to the second
edition of Logic, Semantics, Metamathemat{d®©83) [46],a selection of papers by Tarski
from 1923 to 1938, translated into English by JWodger. Since its publication this Tarski
1986 paper has been cited in hundreds of scholitis. Currently it is first on its journal’s
most-cited list. It has been reprintedTline Limits of Logicedited by S. Shapiro [41].

Alfred Teitelbaum and Adolf Lindenbaum

As Tarski himself says in this paper, the idealwracterizing logical notions in such a way
already appears in a paper by Lindenbaum and hinrsel934 [35]. Adolf Lindenbaum
(1904 — 1941) was the main collaborator and friehdarski when he was in Poland, so it
makes sense to use the expression “Tarski-Lindenblagical notions” (cf. also the
expression “Tarski-Lindenbaum algebra”).

One may dispute the order of the name. And there joke in Poland saying that all
the main Tarski’'s theorems of this period are dugéibhdenbaum. Considering that Tarski’'s
original family name was “Teitelbaum”, to avoid dosion, we could create the name
“A.Lindenteitelbaum” and attribute to the corresgmy character the joint work, ideas and
results, of these two famous logicians.

Lindenbaum-Tarski’s original paper is technicat kelated to a particular context; on
the other hand, Tarski’'s posthumous paper is gebetarather informal. The full theory of
logical notions has not yet been systematicallyettgped, however some important advances
have been made, in particular by Gila Sher [42]nVaMcGee [37] and Denis Bonnay
(Bonnay did a PhD on the topic [21], and see aiso2B06 survey paper: “Logicality and
Invariance” [20]). Solomon Feferman made someaaitcomments about Sher and McGee
approaches in a paper dedicated to George Boolitteeri'Logic, Logics, and Logicism”
[22]; moreover Luca Bellotti wrote an interestingidy of Tarski 1986 paper simply called
“Tarski on logical notions” [1].

The aim of our present paper is not to directly arplicitly develop such a theory,
but to precisely analyze some aspects of it thrauglery simple case. Hopefully, this will
contribute to the general theory. Right now thera contrast between the fact that this 1986
Tarski paper is well- known among a small classp#cialists but not among the wide class
of people interested in logic, despite its profourtdrest.
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We will focus here on a very simple case, logitations in the context of binary
relations (presented on page 150 of Tarski 198@mpajVe believe that the careful study of
simple cases is an important task. Some peopleawvaig doing that thinking it is not serious,
that it is trivial and childish. But as AlexanderdBhendieck (1928 — 2014) wrote: “Discovery
is the privilege of the child: the child who hasfear of being once again wrong, of looking
like an idiot, of not being serious, of not doirtngs like everyone elsé.”And Adolf
Lindenbaum himself was interested in the questfasiroplicity (cf. [34])°

Many people are afraid of being too simple, oregpressing themselves in a too
simple way. If you say something simple which i©mg, then you have more chance to be
detected than if you were to say something wrong complicated way. If you don’t speak
clearly and someone says that what you are sagimgong, you can always say the person
made a wrong interpretation of what you wantedap. #A common trick among sophists.
Simplicity is risky. But as they like to sing in e@any:No Risk, No Fun!

There are two complementary reasons to use alikbilchethodology. On the one
hand by doing that one may go to the root of thingany. On the other hand, there is a
pedagogical aspect: to explain the depth and isiteoé a topic to people having little
knowledge of it. We would be delighted and it woblel wonderful if a 7-year old girl like
Alice could understand this paper. And we thinik pbossible.

There is a tendency to underestimate the inteligeof young children. But Patrick
Suppes, with whom | was working for two years aan®ird at the very beginning of this
century, brilliantly showed that a 7-year old carderstand many things, through his EPGY
program for young children, teaching them advamathematics, physics, music...

This does not mean that the present paper igatestito children; we would be even
more delighted if at the same time some adultsyettje present paper and learn something,
understand something. As written by Solomon inPRheverbs(3.13): “Joyful is the person
who gains understanding.”

2. TheFour Tarski-Lindenbaum Logical Notionsin the Case of a Binary Relation

We consider binary relations, i.e., relations befmvavo objects, elements, things... There are
many such relations and in fact, it is possibleptove that anyn-ary relation can be
expressed/reduced to a binary relafidbarski says the following about logical notions in
case of binary relations:

A simple argument shows that there are only founaty relations which are
logical in this sense: the universal relation whadtvays holds between any two
objects, the empty relation which never holds, ittentity relation which holds

only between “two” objects when they are identieald its opposite, the diversity
relation. So the universal relation, the empty tretg identity, and diversity —

these are the only logical binary relations betweelividuals. This is interesting

because just these four relations were introducetldisscussed in the theory of
relations by Peirce, Schroder, and other logic@rthe nineteenth century [47, p.
150].

Let us consider a binary relation on a set with ®ements. The four relations can be
represented by the following picture that is poigtaph-like, popular in modern mathematics,
and easy to understand for Alice (cf. [38], [39)e have put the corresponding names below
each one with the obvious corresponding substantiue we have replaced “diversity” by
“difference”, because this is a better name. HdpeTtarski will forgive us.
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Emptiness Universality
Identity Difference

3. An Example of a Non-Logical Relation, Formulas and Models

Alice may ask: what does it mean that these anylthielse relations are logical? For example,
why isn’t the following one logical?

We say to Alice: try to describe this configurati@ONF1a) without giving a hame to the
two objects represented by the two crosses, arftbutitreferring directly to them. You cannot
say, “The guyon the leftis not in relation with himself” nor “There isgauy who is in relation
with anotherguy”, but you can say “There is a guy who is ifatien with himself’ and
“There is a guy who is in relation with a guy”.

Alice may propose the following description: “Thas someone who is not in relation
with himself but who is in relation with someone rielation with himself (so the first
someone cannot be the second someone), not ipreVaith him”. It is correct, but this is not
the only possible description.

This can be transcribed into the following formdéila

3x (=(xRx) A Iy ((WRY)A(xRY)A—=(YRx)))

This is a formula of first-order logic without ediia (FOLOWOE). Alice may point out that
this formula also describes the following configioa (CONF1b).

And she asks: is this not a problem?
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To reply to this question, we have to introdunedel theoryto Alice, a theory
developed by Alfred Tarski himself. Configuratiashsscribed by a formula are calletbdels
of this formula. The notion of “model” in this senwas put forward by Tarski; he developed
a whole theory explaining how this works [45].

Alice’s question corresponds to the following twbeirrelated questions:

1) Is it a problem that our formulé describing the first configuration also has aediht
configuration as a model?
2) Is it possible to find a first-order formula haviag a model only the first configuration?

If we allow only formulas with no specific name® constants, only variables, the
answer to question (2) is negative. And this is metessarily a problem because these two
models are considered to l®omorphic we can establish a one-to-one correspondence
between the two that preserves the given struab@irthis configuration, which in model
theory indeed is simply calledstructure This is because what is important is the stregtur
not the nature of individuals, who have no existelng themselves, outside a given structure.

The two crosses have been treated by Alice @y were human beings by using the
pronoun “someone”. She could have said: “Therenislgect” or “There is something”. But
her choice is good because “someone” is a singlel.w&omething” also is single, but its
meaning is not clear in the sense that “somethaagi refer to anything, like a storm, with
many rain drops. This is not a good means to engdamicity, individuality. Tarski talks
aboutindividuals “these are the only logical binary relations betw individuals” [47, p.
150].

Furthermore, “someone” gives a lively touch tor aliscourse, one that is more
amusing than disturbing. And something fundamergapreserved in this funny way of
talking: anonymity. In French at some point in modenathematics people were using
expressions such as “truc”, “machin”, “bidule”, a@&nse of surrealistic poetry that
unfortunately has been lost.

Now Alice asks: why is CONFla not a logical naffowe reply to her: consider a
structure with three elements. Can you see thitisncase the formuldis notcategoricalin
the sense that it has various non-isomorphic modetsexample one model in which the
additional third guy has no relations with the tatbers and one in which he is related with
one of the two:

And that'’s the reason why:
» the formulap does not describe a logical notion
 the relation in CONF1a is not considered as a &giotion.
Then Alice may inquire about these two reasonstheid relations, asking:
(Al) As far as | understand, the formdlaloes not describe a logical notion, because isere
a cardinality for which it is not categorical, sategoricity is a necessary condition for
logicality, but is it a sufficient reason? That i§,a formula y is categorical for each
cardinality, doess describe a logical notion?
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(A2) If a binary relation can be described by aegatical formula, is it sufficient to
consider it to be a logical notion?

(A3) Is a binary relation considered to be a logieztion only if it can be described by
a categorical formula?

The reply to (A1) and (A2) is positive becauseskat.indenbaum’s logical notions
are defined bynvariance expressed here by the notions of isomorphism catelgoricity.
The answer to question (A3) is not so obvious.

4. Expression and Formalization of the Four Tarski-Lindenbaum L ogical Notions

Let us investigate with Alice the formulations bétfour logical notions. We first point out to
Alice that, “There is someone which is not in relatwith himself but who is in relation with
someone in relation with himself, not in relatiorthwhim” is rather complicated. And ask her
to compare with the following formulations of thauf logical notions:

Names Formulationsin Natural L anguage

Emptiness Nobody is in relation with anybody

Universality | Everybody is in relation with everybod

Identity Everybody is in relation only with himself

Difference Everybody is in relation with everyboelycept with himself

The four relations have been expressed in thigetabing English, a natural language which
spontaneously grew in the beautiful island whereéAivas born. Now let us see how these
four relations can be formulated in the artifiggmbolic language FoLoWOE that we already
presented to Alice in the previous section. Aliceyndraw the following table:

Names Formulas of First-Order Logic without Equality
Emptiness VxVy =(xRy)
Universality VxVy (xRy)

Identity ?2?7?

Difference ?2?77?

She put some question marks where she was notaafiel a formalization using FOLoWoE.
There are in fact no formulas of FOLOWOE that egpréhe logical notions of identity and
difference. It has been proven that identity carimotexpressed in first-order logic without
equality (see [2], [4], [5], [7], [9], [30]). We Winot present the proof here, because this can
be understood only after a full year’s introductatass in logic (and some people have
studied logic for one thousand and one nights &hdisn’t understand that).

But admitting this theorem, Alice can immediatelyderstand that the difference also
cannot be expressed with a FoOLoWoE formula, becaligevere the case, then the negation
of if would express identity. All this gives a néga answer to the third Alice’s question
(A3).

Alice then may ask: but how do we know that idgnand difference are logical
notions? We can reply to her: close your eyes aratjine a structure with 5 elements where
the only arrows you have are 5 arrows rounding ebeach of the five crosses, a
generalization of the diagram we presented prelyoumsthe case of a structure with two
elements. Does not this correspond to the expmesSkverybody is in relation only with
himself’, in the case of a 5-element set? Can yar something else corresponding to this
expression in this case? And Alice of course affgning her eyes cannot reply no. We may
go further and ask her to close her eyes agairimadine a similar structure with an infinite
number of crosses, and she will certainly agairreply no.
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The situation of difference is more difficult to agine as a mental image, but we can
ask Alice to draw a picture:

And this is the only configuration correspondingdifference in the case of a 5-element set
that she can draw.

So, the situation of identity and difference is #ane as the situation of universality
and emptiness: they are categorical notions. Bthencase of universality and emptiness this
categoricity can be expressed by FoLoWoE formulas.

Alice may inquire why we forbid the use of the e@yaign, “=", which is such a nice
sign, invented by her cousin Robert Recorde! Amsmight argue that, if we lift the ban, she
can express identity with the following formula:

Vx (xRx) A Yy (=(y = x) > =2(xRy)A=(yRx))

But we can say to Alice: is it not a vicious cir¢tedefine identity using equality, and is the
equality sign not referring to identity? After tking for half a second, she replies: "Sure and
| don’t want to be trapped in a vicious circle, doive freedom!” (cf. [17]).

5. Relations Between the Four Tarski-Lindenbaum L ogical Notions

Now Alice may ask: what are the relations betwdwsé four logical notions? Tarski says
that the relation of difference (that he calls *#lisity”) is the “opposite” of the relation of
identity.

According to the theory dhe square of oppositiothere are three different notions of
opposition: contrariety, subcontrariety and contradiction In set theory, the notions
corresponding to these three oppositions are raspbc mutual exclusior{or disjointness),
full intersecting unionandcomplementationOnly the last word is standard.

Anyway, here are some diagrams corresponding teethetions, so that Alice will
perfectly understand the meaning of these words:
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Mutual Exclusion

Full Intersecting Union

Complementation

A binary relation over a set of two distinct elensemlamorously called & and ‘b”, can be
represented by a set of pairs. There are four lplespairs: |;a>, <a;b>, <b;a>, <b;b>. The
binary relation acting on them gives rise to thieldabelow, also corresponding to what is
called a Robinson’s diagram — in honor of AbrahambiRson (1918 — 1974), a good friend of
Tarski and also a great model-theorist.

| dentity Difference Universality Emptiness
(aRa) —(aRa) (aRa) —(aRa)
—(aRb) (aRb) (aRb) —(aRb)
—(bRa) (bRa) (bRa) —1(bRa)
(bRD) —(bRD) (bRD) —(bRb)

This means, in the case of the relation of identitgt this relation is the set with the only two

pairs: <;a>, <b;b>, and in the case of the relation of differencat this the set with only

the two pairs: &b>, <b;a>. So, from the point of view of the set of all igaiidentity is the

complement of difference, and vice-versa. For teeson, we can say that these two logical
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notions are in contradictory opposition, or, simphg contradictory. And the same happens
between universality and emptiness: these two #bgiotions are contradictory. We can
therefore draw the following healthy red crossyniet

Universality Difference

Identity Emptiness

This red cross is a step towards a full squarepgisition, where, besides contradiction in
red, we have contrariety in blue, subcontrarietgrieen'* and in black subalternation (which

iS not an opposition), as shown in the figure belevihere at each corner we have put
guantifiers, having then the most typical exemgidifion of the square.

v —d

= -V

Alice may ask: can we make such a square of oppositith these four logical notions? The
reply is negative. The fact that universality dsgical notion is expressed by a formula using
universal quantifiersvxVy (xRy) can be misleading, giving the idea that we canyehsild

a square of logical notions starting with the teft korner. But Alice can check that the
relations between the four logical notions are priypdescribed as follows:

Universality Difference

Identity Emptiness
6. TheLogicality of Variety

Besides the four structures corresponding to thie kagical notions, there are in the simple
case of a binary relation 12 other structures. ®hjgst the world of combinatorics: we have a
total of 16 structures for all the configurationfsaobinary relation over a two-element set.
Among these 12 non-logical structures, half of them reverse isomorphic images of the
other ones — mirrors of them. In section 3, we haluweady presented two of them; here is the
whole picture for Alice:

28



OOOOOC
EOOVOE

Let us consider the class of these 12 structutes. the complement of the class of the 4
structures corresponding to logical notions. Irsthblass of 12 structures there are non-
isomorphic structures, for example:

0
0

and Alice can easily be convinced that it will ajwabe the case also for other cardinalities
greater than 2. For this reason, we will say thit ¢lass corresponds to a notion, that we call
variety. ™
There is invariance in this variety: for every aadlity, it always refers to the same
class of models, those not corresponding to logioéibns. Alice may want to qualify variety
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as a non-logical notion. And, indeed, the notionvafiety collects all the non-logical
relations. But since it is invariant, and sinceansance is the basis of Tarski-Lindenbaum
logical notions, why not also saying that variesyai logical notion, a fifth logical notion?
Tarski-Lindenbaum invariance is based on isomorphisut it can be seen from the higher
perspective of notions always referring to the salasses of models.

From the point of view of classes of models, theamoof variety is the contradictory
opposite of logical relations, but this is not @egarily a problem, an obstacle to calling it a
logical notion; contradictory opposition is a logi concept and we can apply here the idea of
the identity of opposites.

In a previous paper [14] we were not afraid toroldhat anticlassical logic, i.e. the
complement of the consequence relation of claskgad, can be considered as a logic, even
if it is obeying none of the three Tarskian axiofos a consequence relation (reflexivity,
monotonicity and transitivity). We did that withettbenediction of Jan tukasiewicz who
promoted the notion of a refutation system.

Here we are claiming that variety is a logical antiwith the benediction of Alice
Lindenteitelbaum.

7. An Enigmafor Alice
For a happy ending we ask Alice: is there a FoLoVitmEula A whose models are exactly
the variety of non-logical relations (for any cavality)?

Alice may propose the following formula

dx Ay (xRy) A Ix Iy =(xRy) A Ix—(xRx) A Ix (xRx)

having in mind the table below where each negatiba logical notion is formulated by a
FoLoWoE formula:

Name Formulas of First-Order Logic without Equality
Non- Emptiness dx 3y (xRy)
Non-Universality dx 3y = (xRy)
Non-Ildentity Jx = (xRx)
Non-Difference Jx (xRx)

But this is a wrong answer! Becausexcludes the structures on lines 2 and 5 presented
the whole picture of non-logical relations in sent6. So we will let Alice find the answer to

this question before the end of the night or betbeeend of her life... . If she cannot find the
answer by herself, we let her use as a joker MIA@¥,white cat, to whom she may ask the
guestion (she can also have a look under the garpet
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8. Dedication and Personal Recollections

When X writes a paper in honor of Y, there are é¢hegclusive and exhaustive categories
forming a triangle of contrariety. X may write saimeg which is:
(1) a critical comment of some work of Y
(2) related to the work of Y
(3) on atopic upon which X is working, but not in tfae above categories.

The present paper clearly falls in the second cayedor two reasons:
* The Polish School
* The Square of Opposition

Jan Woléski is mainly known for all the work he did to peege and promote the
history of the Lvov-Warsaw school of logit But he has also developed research in many
topics, including the square of opposition.

We have never worked directly together, but we haslaborated in many projects.
As far as | remember, my first encounter with Wisld was at th&8" Conference of History
of Logic November 17-18, 1992, in Krakéw, Poland and thtest one at thellst
International Wittgenstein SymposiuAugust 5-11, 2018, in Kirchberg, Austria of whisie
both were invited speakers. In between we met inynogher events around the world such as
Logic, Ontology, Aesthetics - The Golden Age ofsRdPhilosophy September 23-26, 2004,
organized by Sandra Lapointe in Montreal, Canadaould be difficult to list them all. What
IS important to stress is that this shows that lwdths think that participation in events and
interaction with colleagues are fundamental to aede Wol@éski also organized events. |
remember in particular thelth International Congress of Logic, Methodologpda
Philosophy of Sciencéugust 20-26, 1999, Krakéw, Poland, the best LMR&®k part in.

| have also organized many events, in particdeunching three series of world

events:
* UNILOG: World Congress and School on Universal Logic
* SQUARE:World Congress on the Square of Opposition
« WoCoLoR:World Congress on Logic and Religion
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Wolefiski has been an invited speaker of editions ofhase serie¥ He was keynote
at the # SQUARE in Montreux, Switzerland, 2007, keynot¢hat 2° WoCoLoR in Warsaw,
Poland, 2017 (logically supporting atheism), kegnat the ? UNILOG in Xi'an, China,
2007.

At this event in China | also invited his formeatder Stan Surma whom he had not
seen for many years (Surma emigrated during themaomst period to Africa, then Australia,
then New Zealand). In the photo in the next page gan see Jan Wadiski circled in red,
Stan Surma in green and me in blue. And you camralsognize other famous logicians such
as Wilfrid Hodges, Arnon Avron, Bob Meyer, VinceHiendricks, Arnold Koslow, Peter
Schroeder-Heister, Valentin Goranko, Heinrich Wiagsetc.

Besides events, we have been collaborating in raliforojects. Jan Wofeski wrote
two entries for thénternet Encyclopedia of Philosopb§which | am logic area editor:

* Adolf Lindenbaum [56]
* The Semantic Theory of Truth [57]

He contributed to the volumEhe Lvov-Warsaw School. Past and Presaited by
A.Garrido and U.Wybraniec-Skardowska (2018) thstipervised as the managing editor of
the book serieStudies in Universal Logiwhere it was publishedHe wrote the following
three chapters in this book:

e Alfred Tarski (1901 — 1983) [53]
» Some Philosophical Aspects of Semantic Theory atif54]
« Jerzy Stupecki (1904 — 1987) [35]

He also published a paper on the square of opposit the journallLogica
Universalisthat | founded and of which | am the Editor-in-Ghie
» Applications of squares of oppositions and themegalizations in philosophical analysis
(2008) [52].

For all these reasons | am very glad to contriltatéhis special issue and to dedicate the
present paper to Jan Wagki for his 80" birthday:

May you live actively to 120 years of age at ledah!

I )@t %X 3B | N T (2007.8.20-220%)
The 274 World Congress on Universal Logic 20-22August,2007 xian,China
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Notes

1. I have launched in 2019 tWdorld Logic Day celebrated in 60 locations all over the world
on January 14, the day of birth of Tarski and oé ttheath of Godel (cf. [13]), and
subsequently made the proposal to UNESCO to rezeghis day. It officially entered into
the UNESCO calendar of international days in 2(Réfore that | managed to launch in
Poland theAlfred Tarski Prize of Logigpart of the projech Prize of Logic in Every Country!
(cf. [11]).

2. Each of these four volumes has been reviewed bgdZam inMathematical Reviews
1991 (see [48]). During many years they were oustotk. They have been re-issued by
Birkh&user in 2019 [48].

3. We are preparing a volume with posthumous papeich(as the one here discussed) and
correspondence (to be published also by Birkhauser)

4. Givant wrote two interesting papersiime Mathematical intelligencaabout Tarski for a
general audience (see [27] and [28]) and therelss the book by Solomon and Anita
Feferman about Tarski’s life and work [23].

5. As Jan Woléski pointed out [51], the first introduction to merd logic in Poland is a
presentation of Schrdder’s logical ideas as an ragigeto tukasiewicz’'s book about the
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principle of contradiction in Aristotle [36]. Jarukasiewiecz (1878-1956) was, together with
Stanistaw Léniewski (1886-1939), the main teacher of Tarski.

6. Tarski also used the word “notion” in the title s 1929 paper [43] about consequence
operator (in French, but this is exactly the sanmedwsyntactically and semantically, as in
English). In this paper he presents the consequepermtor as a fundamental notion of the
“methodology of mathematics” which for him is hesgnonymous with “logic”. | have
recently developed a theory aboattion (cf. [10] ) in harmony with Tarski's use of thisovad

in his 1929 paper and his 1986 paper.

7. Rohit Parikh reported that he attended a similrkigt Tarski at Bristol University (UK) at
about the same period as the talk in London andhadéitDunn attended also a similar one at
Rice University (Houston, USA), in January 1967anh grateful to both of them to have
informed me about that.

8. First paragraph of “L'enfant et le bon Dieu”, fichapter “Rravail et découverte” of the
first part of "Fatuité et renouvellement of Grothetk’s autobiographiRécoltes et Semailles
[29] (thanks to Laurent Lafforgue for the precieéerence).

9. | have been quite influenced by some ideas of Lnbdem and for this reason, | have been
working at making his work better known. This hasuited in the publication of three papers
about his life and work: [59], [40] and [56].

10. See [31], [32], [33]. | am grateful to Lloyd Humisarne for these references.

11. We have introduced this coloring of the square3h For recent developments on the
square of opposition see [15] and [16]. Theress al special issue of the jouriéiktory and
Philosophy of Logion the square [18].

12. Thanks to Arnon Avron who pointed out the incomgietss of a previous version of this
diagram.

13. The word “variety” is used with a different meaniimgUniversal Algebra, cf. the famous
HSP theorem [19]. But this use is rather artificradt directly connected to the meaning of the
word in natural language.

14. His main book on the subject is [51] but he pulditledited lots of other books on the
topic. He also edited together with the son of Kiae interesting posthumous paper by
Tarski [50].

15. This series of events was launched together witltollgague Ricardo Silvestre.

16. He was also keynote speaker at 1ieworld Congress on Analogy Puebla, Mexico,
November 4-6, 2015; an event | co-organized wittan Manuel Campos Benitez and
Katarzyna Gan-Krzywosagka. | remember a long discussion | had with himtlos bus
going back from Puebla to Mexico International Airp

17. This book was launched at th& &NILOG in Vichy, France in June 2018, with the
participation of Woléski.
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Abstract:

Artificial Intelligence, both as a hope of making substantial progress, and a fear
of the unknown and unimaginable, has its roots in human dreams. These
dreams are materialized by means of rational intellectual efforts. We see the
beginnings of such a process in Lullus’s fancies. Many scholars and enthusiasts
participated in the development of Lullus’s art, ars combinatoria. Amongst
them, Athanasius Kircher distinguished himself. Gottfried Leibniz ended the
period in which the idea of artificial intelligence was shaped, and started the
new period, in which artificial intelligence could be considered part of science,
by today’s standards.
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Kircher, Gottfried Leibniz, Jan Wolenski.

Nothing is more important than to see the

sources of invention which are, in my opinion

more interesting than the inventions themselves.
G. W. Leibniz [135].

To Professor Jan Wolenski for his 80th birthday in a gift.

1. Introduction

The following text was written by a man and not by a machine. Some pioneers of artificial
intelligence predicted that in the 21st century machines would be “thinking.” February 2019
OpenAl reported on the creation of the GPT-2 algorithm, which can write competent,
reasonable essays'. It would be disappointing for these predictions that machines do not
“publish” (all) yet. The author of this text, however, not only wrote it on a computer, he also
used automated support, such as checking compliance with a dictionary, thus avoiding lexical
errors. The bibliography was automatically compiled according to a given pattern from data
obtained from the bibliographical database. He also used the Internet to decide what to look
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for, what to use and how to systematize the knowledge he acquired and to draw the
conclusions that this and other knowledge had provided.
Artificial intelligence, Al is a challenge, and as John McCarthy (1927 — 2011) believed in the
1960s, a breakthrough can occur in five to 500 years, but this challenge can never be
abandoned.

The term ‘artificial intelligence’ (AI) was coined by John McCarthy in 1955 in
connection with a research project. In his proposal we read [93]:

The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to find how to make
machines use language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves.

The Dartmouth Conference ‘Summer Research Project on Artificial Intelligence’ in 1956 was
the first artificial intelligence conference. And there was a shift away from the physical
model, the cybernetic machine thinking model, to the non-physical model, a logical, symbolic
formalized system.

The term ‘artificial intelligence’ is one of those that can be considered a suitcase word,
and therefore the initiator of this term, and the co-creator of artificial intelligence, Marvin
Minsky, understands the words in which are “packed” a variety of meanings [98]. By AL, we
mean both the device, the machine, and the theory of how this device works.

The context of using the term ‘AI’ should approximate the meaning in which it is used
in a given place. The aim of Al as a field of science is to acquire knowledge that will enable
the creation of Al, the assessment of the quality of operation and theoretical and practical
limitations. First of all, AI is ultimately nothing more than a desire to replicate human
cognitive skills in machines. The term ‘artificial intelligence’ could be replaced by ‘cognitive
technology,” which would be in substance closer to what is the subject of this discipline. Al is
a research field focused on the development of systems capable of performing tasks that
require human intelligence. Al as the target is a machine — it was in Alan Turing's mind,
proposing a test — whose behavior is not distinguishable from human behavior [128].

The idea of what we call artificial intelligence today is — as McCorduck [94] claims,
for example — rooted in the human need to do something on your own. As God created man in
his likeness, so man in his likeness creates artificial intelligence. Al creators would be in this
long tradition, covering everything from the time of the appearance of the Decalogue, whose
first commandment prohibiting the creation of idols — you will not have other gods before me
— to homunculus [14], Paracelsus (1493/4 — 1541), Golem created by Yehudah Loew ben
Bezalel “Maharal” (1512/1526 — 1609) born in Poznan, Rabbi of Prague [95] and
Frankenstein [27] invented by Mary Shelley (1818). However, this only points to the possible
motives of those who dreamed of creating or created artificial intelligence in one form or
another. These are imponderable. They are present in all human activity, and in particular in
creative and scientific activity.

This consideration will be devoted to the idea of artificial intelligence and the
formation of what provided a cognitive basis for scientific research or, possibly, of what is
genetic to this research. So we're going to think about the intellectual rationale and the
cognitive rationale of Al research. We will skip — if this does not involve the cognitive aspect
in which we consider Al — the various implementations starting with the mythical products of
Hefajstos, the walking lion Leonardo da Vinci [9] and others.
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2. Rajmundus Lullus

The idea of artificial intelligence can already be seen at the beginning of philosophy in ancient
Greece [25, pp. XV-XVII]. The inquiries of Greek philosophers, in particular the formation of
the idea of formal rules of reasoning, interested one of the contemporary artists of Al, Marvin
Minsky (1927 —2008) [97, p. 106]. When the Greeks came up with logic and geometry, they
were fascinated by the idea that any reasoning could be reduced to a certain kind of
accounting. The greatest achievements of this ancient period include Aristotle's concept of
formal logic and its syllogistics.

At the beginning of the road to artificial intelligence, however, there were dreamers.
Ramon Lull (c. 1232/33 — c. 1315/16), a Catalan from Mallorca, which was then — and these
were the Reconquista times, which only ended in 1492 — inhabited by large groups of Jews
and Muslims. So he lived ex orientte lux. He is one of the most prominent writers,
philosophers and scientists [10], [106].

The University of Barcelona has set up a research center on Ramona Llulla's
achievements®. The importance of Lullus's concept for the development of artificial
intelligence [28] is being considered. Lullus's legacy is also being studied at the University of
Valencia. Lullus is recognized as the most influential Catalan writer and author of the first
European novel Blanquerna [8]. The Lullus’ Tree of Sciences is used as the Spanish logo of
the Consejo Superior de Investigaciones Cientificas (High Council for Scientific Research)®.
The new edition of all Lullus works prepared by the Raimundus-Lullus-Institut Freiburg im
Breisgau) will cover 55 volumes [122]. Recent studies show Lullus's achievements in election
theory, including that he was the author — formulated a few centuries later — of the Bordy
method and the Condorecta criterion. The terms ‘Llull winner’ and ‘Llull loser’ [121, chapter
3] appeared due to his works.

He is referred to as Doctor Illuminatus — a nickname he gained after meeting Duns
Scotsman in 1297 — but he is not among the doctors of the Catholic Church. In 1847 he was
beatified by Pope Pius IX, although in 1376 his rational mysticism was condemned by Pope
Gregory XI and again by Pope Paul IV. 100 of his theses were condemned by the inquisitor
Nicholas Eymerich (approx. 1316 — 1399) — yet Lullus remained in good relations with the
Church. Lullus's work was synthesized by his student Thomas Le Myésier (13th century —
1336) in Electorium [68].

The statue of Lullus in Montserrat is characterized by the order of God — modeled on
the figure of Logica Nova (1512) — by eight-step stairs: stone, flame, plant, animal, man, sky,
angel, God. They symbolize the hierarchy of sciences (states of consciousness) that Lullus
proclaimed. Lullus inspired many and more artificial intelligence researchers [107].

In 1265, at 33, Lullus was apprehended and became a Franciscan storyteller. He
proclaimed that three religions recognizing the Old Testament:. Judaism, Christianity and
Islam should be united to stop hordes of oppression from Asia. He got involved in missionary
work. He wanted to act with logic and reason. In approximately 1274 he experienced
enlightenment at Mount Puig de Randa (Majorca) and got the idea of a method that he later
described in the 1305 edition Ars magna generalis ultima [88], [91]. It was accompanied by
the abbreviated version Ars brevis [87]. The art he designed was based on loans from Arabs —
which he didn't hide — it was supposed to be a tool for converting unbelievers. Lullus spent
years studying the doctrines of Jews and Arabs.

Lullus wanted to show that the Christian doctrine can be obtained mechanically with a
fixed resource of ideas. One of Lullus's numerous tools for his method was the volvelle, as he
called a device he had constructed.

If the logical machine is understood as the logic data processing system, Aristotle,
creating the concept of formal logic, gave rise to a symbolic logical machine, and Lullus’
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volvelle can be seen as a physical logical machine, and this is usually referred to as a
‘thinking machine.’

The name “volvelle” comes from the Latin verb “volvere”, which means as much as
“rotate”. Inspiration can be seen in the Arabic astrological device zairja [85]. Lullus most
likely experience of zairja would have been during the missionary expeditions [86], [129].
Zairja was used by Arab medieval astrologists.

The term ‘zairjah’ derives from the Persian words ‘zaicha’ (horoscope, astronomical
table) and ‘da’ira’ (circle) [85, p. 216].

A volvelle was made of paper or parchment. There was a volvelle with which to
resolve religious disputes. A combination of nine letters was produced, representing nine
attributes of God (which all monotheists recognize) written on a moving wheel. Depending on
the subject, there were two or more such wheels. Another volvelle, called the “Night Sphere”
by Lullus, was used to calculate the time over the night by the position of the stars. It was
possible to determine the hours in which, according to the movement of the heavenly bodies,
medication is most effective. The moving parts of the volvelle were placed on the blue bodies
on the timer or on God's attributes and arguments for His existence, but it depended on the
subject. Lullus wanted to — as if we would say today — mechanize the reasoning process. He
claimed that his art lead to more certain conclusions than logic itself, and that it is therefore
possible to learn more in a month than through logic in a year.

Werner Kiinzel was so fascinated by Lullus' ‘machine’ that he writes [67]:

Since 1987, I have programmed this first beautiful algorithm of the history of
philosophy into the computer languages COBOL, Assembler and C.

The Lullus method assumed that the number of fundamental truths is limited, and all the
truths of a given field are derived from them in general by combinations of relevant terms.
The machine was supposed to put together combinations and to indicate which ones are real.

A volvelle [112] is also a functionally related astrolabe. An astrolabe is a device that
has been used to observe and calculate the positions of heavenly bodies. It can be seen as a
kind of analog computer for astronomical calculations.

Volvelle, or rather those who used them, were suspected of black magic. Perhaps this
approach was based on the mystical inspiration of the creator Lullus, and the fact that the
device was used to predict the future. Numbers and measurements were attributed to spiritual
and supra-natural potentials.

In Lullus' time, especially in Spain, the Jewish community developed a Kabbalah, and
its origins take place in Cataloni in the 12th century [45], [46]. According to the Jewish
tradition, Hebrew is the language that God used to create the world. The Sefer Yetsirah (Book
of Creation), one of the earliest Jewish mystical texts (it was written between the 2nd and 7th
century), describes the process of creation as being accomplished with 22 letters of the
Hebrew language and cardinal numbers. The Sefer Yetsirah explained how one could imagine
and possibly repeat the creation by manipulating the letters of the Hebrew alphabet. Thus, was
created the Golem (Psalm 139:16). It was believed that by giving the name to the Golem one
could revive him and control his conduct, and by wiping out that name one could destroy him.

Kabbalah interprets the Torah using anagrams and other linguistic combinations.
Lullus can be seen as someone who inspires these techniques in the search for a new way of
evangelization. He wrote about Kabbalah® that its object is creation, or language. For this
reason, it is clear that its wisdom governs the other teachings. They have their roots in it. For
this reason, these teachings are subordinated to this wisdom, and the principles of science and
their rules are subordinated to the rules of Kabbalah. The scientific argument alone without
the Kabbalah is insufficient.
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Lullus provided the basis of the medieval Christian Kabbalah in its various varieties.
In each case, the objective was one: by applying the rules of Kabbalah to prove that Jesus was
the Messiah. Because God created the world using the Hebrew language, the contemplation of
this language was the contemplation of both God and His creation. Lullus used the Latin
alphabet, but the idea of the combination was the same.

Computer scientists have identified Lullus as someone who provided the (pre)origins
of computer science [16], [10, p. 290], [65, p. 56]. Lullus is the one from whom you can start
the story of ideas of thinking machines, which is the story of artificial intelligence.

Lullus's idea was revolutionary for two reasons, namely that the volvelle could be seen
as an ‘artificial memory,” which freed the user from remembering a large amount of detailed
information, and its resources could be exchanged and then it could produce new knowledge.
The content of this knowledge was dependent on the content of ‘memory.” So in a sense, it
was the idea of a universal machine.

Lullus is an important figure in the history of Al, primarily for the reason that he has
interacted with many prominent researchers who have relaunched his idea in successive eras
[10, pp. xii-xiv]. The idea of ars raymundi has revived the European public's inquiries for
several centuries.

Let's list the most prominent Lullists in chronological order according to the date of
their birth who contributed to the development of Al. So, we'll skip characters like Martin
Luther (upon whom Lullus also acted on).

3. Lullists

Lullus gave us the beginning of a concept that has survived at least until the times of Gottfried
Leibniz [81], [119]. Among many ideas, let's point out those whose ideas had the most impact
on building a thinking machine. Not everything is known. In the 16th century, the biggest
Lullist was Franciscan Bernard de Lavinheta. However, we do not know much about him. It is
known that his release of Lullus' work was most common in Europe at the time [89, vol. I, p.
80].

3.1. Giovanni de la Fontana

Giovanni de la Fontana (c. 1390 — 1455/56) [38] was an outstanding — as we would say today
— designer. He learned the art of engineering from Greek and Arabic texts. In the encrypted
Bellicorum instrumentorum liber, cum figuris et fictithousand litoris conscriptus [50] he
illustrated and described various instruments of war. In the Secretum de thesauro experi
mentorum ymaginationis hominum [32] he made available to readers about 1430 — also
written in an encrypted manner — in which he studied different types of memory and
explained the function of artificial memory. He proposed some devices for remembering and
‘machinery’ with fixed structure and mobile parts and variables, allowing a combination of
characters — including a direct link to the Lullus design.

3.2. Nicholas of Cusa

Nicholas of Cusa (1401 — 1464) in the De coniecturis [99] develops its method ars generalis
coniecturandi. He describes how to make assumptions, illustrating this with circular diagrams
and symbols very similar to Lullus’. Venice, in which he lived, entered into contact with
Byzantine and Arab countries. The question that Lullus had asked two centuries earlier
became natural about the universal language for building an agreement between East and
West.
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3.3. Giordano Bruno

Giordano Bruno (1548 — 1600) uses Lullus' idea to create artificial memory, and he uses this
technique to make rhetorical discourse. Kircher comments later in 1669 [59, p. 4] that
Giordano Bruno also developed Lullus' volvelle technique so that an unlimited number of
sentences can be generated [12]. In his system, alphabetic combinations do not lead to images,
but rather combinations of images lead to syllables. This system not only facilitates memory,
but also enables the generation of almost unlimited words [26].

3.4. Thomas Hobbes

Thomas Hobbes (1588 — 1679) is not referred to as Lullist in the sense of referring to Lullus.
The Hobbs' doctrine is important primarily because of the concept of thinking as a calculation
and influence on Leibniz. I also know nothing about the contacts between the outstanding
Lullist Kircher and Hobbs. Hobbes was 14 years older than Kircher. Hobbes published the
Leviathan in 1651 that we are interested in and Kircher published the Ars Magna Sciendi in
1669, 18 years later [59].

Hobbes uses the term ‘ratiocinari’ to mean both reasoning and accounting, as one
thing. It was understood as calculation consisting of addition and subtraction, simply an
arithmetic operation. He cited various reasons for this approach, referring to the meaning of
the relevant words in Greek and Latin [42, chapter IV]. He added that ‘syllogism’ actually
means adding, summing. The word count corresponds to the grammar, the syntactics of
natural language, understood as an operation on words.

Hobbes is the first who directly formulated the concept of syntactic operation as
calculation. Syntactic procedures are arithmetic. Hobbes recognizes the functional nature of
syntactics as a kind of technical procedure. Words are used as numbers, i.e. as agreed artificial
marks. His saying is famous [42, chapter IV]: “Words are wise men's counters™. The
symbolic character of words is, according to Hobbs, the essence of their nature from the very
beginning of creation. Adam invented the words ex arbitrtrio. Although, as Hobbes writes
[42, chapter IV]:

The first author of Speech was GOD himself, that instructed Adam how to name
such creatures as he presented to his sight.

Hobbes had a negative score on the Kabbalah. At the end of Chapter XL of the Leviathan, he
wrote that the Kabbalah took over the Greek demon and through the Kabbalah the Jewish
religion became more corrupted (their Religion became fly corrupted).

On reasoning as calculation Hobbes writes [42, chapter V]:

When a man reasons, he does nothing else but conceive a sum total from addition
of parcels — These operations are not incident to Numbers onely, but to all manner
of things that can be added together, and taken one out of another. [...] The
Logicians teach the same in Consequences Of Words; adding together Two
Names, to make an Affirmation; and Two Affirmations, to make a syllogisme;
and Many syllogismes to make a Demonstration; and from the Summe, or
Conclusion of a syllogisme, they substract one Proposition, to finde the other.

He also writes further:
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Out of all which we may define, (that is to say determine,) what that is, which is
meant by this word Reason, when wee reckon it amongst the Faculties of the
mind. For Reason, in this sense, is nothing but Reckoning (that is, Adding and
Subtracting) of the Consequences of generall names agreed upon, for the Marking
and Signifying of our thoughts; I say Marking them, when we reckon by our
selves; and Signifying, when we demonstrate, or approve our reckonings to other
men.

The first task of language is a mental discourse, and therefore it is a cognitive function. The
second task is to transfer knowledge to others. The third is to communicate our will to others,
and the fourth is an entertainment and artistic function [42, chapter IV].

Hobbs' views on language and reasoning were significantly influenced by mechanics,
the new subdiscipline of physics that Galileo Galilee provided the beginning of [132]. Galileo
says: “universum horologium est.”

For Hobbs the computational use of natural words is the first need to obtain a
reasonable, i.e. a real insight, and secondly, if the calculation is done right, get complete
reliability and complete confidence.

3.5. Athanasius Kircher

Athanasius Kircher (1602 — 1680) is the famous Jesuit scholar, the new Aristotle, the last who
knew everything [31], the master of one hundred works [109], [110], the last man of the
Renaissance [39] — he has a multitude of contributions to mnemotechnology, to the
development of mechanization of calculating of “thoughts,” to the design of slots and to the
search for a universal language that would ultimately free humanity from the curse of the
tower of Babel [82].

Kircher's scientific achievements impress with both diversity and size’. As a curiosity,
he was the first scientist to be able to ensure his preservation from the sale of books [52, p.
96].

Findlen writes [31, p. 329]:

During his own lifetime his books could be found in libraries throughout the
world. He had a global reputation that was virtually unsurpassed by any early
modern author.

In the Encyclopedia Britannica we read:

[...] settled in 1634 in Rome. There he remained for most of his life, functioning
as a kind of one-man intellectual clearinghouse for cultural and scientific
information gleaned not only from European sources but also from the far-flung
network of Jesuit missionaries.

The interest in the person and achievements of Anathasis Kircher dates back to the 1980s. For
three centuries he was forgotten. Knittel (1644 — 1702) wrote the following book about
Kircher in 1682: Via Regia ad omnes scientias et artes. Hoc est: Ars universalis, scientiarum
omnium artiumque arcana facili us penetrandi [4]. It was the last thesis that openly defended
Kircher's approach to knowledge, which was the subject of sharp criticism at the time. Knittel
as his authority points to Pitagoras (c. 570 — c. 495 B.C.), Aristotle (384 — 322 B.C.),
Raimundus Lullus, Sebastian Izquierdo (1601 — 1681), and Kircher. The Via Regia was very
popular and had numerous editions [44]. At this time, Newton, who, like Leibniz, was
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fascinated by many of the questions that triggered Kircher's concept, came to completely
different conclusions.

Donald Knuth in the Art of Computer Programming [65, pp. 60-61] points out three
17th century authors, as those who made discoveries used by computer science. They are:
Tacquet, van Schooten, and Izquierdo mentioned above. Sebastian Izquierdo is the author of
the work Pharus scientiarum ubi quidquid ad cognition humanam humanitus acquisibilem
pertinet, ubertim iuxta, atque succincte pertractaur [49].

Today's science historians see Kircher's scientific achievements as helpful in
understanding the transition from ancient to modern ways of thinking about the world [61].
Major research projects are being carried out [4], [37], [51], [123].

The Museum of Jurassic Technology” has a permanent exhibition dedicated to Kircher
and his legacy: ‘Athanasius Kircher: The World Is Bound With Secret Knots’. From 07.03 to
10.04.2008 in Collegio Romano, where Kircherianum was there, the artist Cybéle Varela
organized an exhibition ‘Ad Sider per Athanasius Kircher’ (‘To the Stars by Athanasius
Kircher’).

His correspondence must be taken into account when trying to determine the
inspiration and influence of Kircher's work. Among the 686 people who wrote to him are,
among others, Leibniz, Torricelli, and Gasendi [4]. The archive in Gdansk contains his letters
to Hevelius, and the archive of the Mazovian letter to Kochanski. There are 2741 letters [51],
[123]. In the context of these considerations, any correspondence with Hobbes would be
interesting. I have not found any data about that correspondence. Descartes is not among the
respondents (1596 — 1650).

Kircher takes Lullus' ideas first of all in the Ars Magna [59]. The work consists of XII
books. There are books whose titles directly point to the issues of interest: III. Methodus
Lulliana; IV. Ars Combinatoria.

Kircher not only discusses the Lullus concept, but also presents a new and universal
Lullus method of combination concept. It seems to have the belief that Lullus' method of
combination is secret and mystical, that is this is esoteric.

Kircher used the same wheels as Lullus, but differed in the choice of symbols to be
combined. This notation makes a difference. He tried to produce possible combinations of all
finite alphabets (not only graphic, but also mathematical). Kircher was known for his coding
and decoding skills. He tried to read the hieroglyphs, he also learnt Coptic and he is the author
of the first grammar of this language Prodromus coputs sive aegyptiacus [54], and in Lingua
aegyptica restituta [56] he showed that Coptic is the last phase of development of the ancient
Egyptian language. A more mathematical approach distinguishes his project from the Lullus
project. The universal language, lingua universalis, not only allows you to understand
everything, but also is a tool for close investigation.

The idea of binding digits to words is realized in gematry, which is a component of the
Kabbalah [108]. The name derives from ‘geometry.” Gematry originates in the Assyrian-
Babylonian alphanumeric coding system. Others had similar ideas, including Greeks and
Arabs.

Kircher not only addressed the theoretical issues of encryption and decryption, but
also designed a coding and decoding machine. These and other machines, collected by
Kircher, were in Kircherianum’ [30], [31]. This is one of the first public museums in which,
in addition to the artifacts obtained, he presented the many fruits of his invention, including
models of robots, equipping them with speaking tubes so that the vending machine greeted
visitors [40], [82], [83], [134]. In the 14th and 15th centuries, there were no shortage of
designers of various kinds of machines and automata; as shown by someone like Leonardo da
Vinci (1452 - 1519).
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In 1649 Kircher invented the first of the brands, or cistae — these were wooden boxes
that had written numbers, words, and sounds (4rca musurgica) [63], in general everything
that can be automatically processed by a machine that combines things according to the logic
defined and programmed by the inventor [64, p. 60], [96]. These bodies, as they were also
called for because of their similarity to musical bodies, formed a complementary system of
dissemination of encryption systems (polygraphic and steganographic) [31, p. 287].

In the museum of science history Museo Galileo' there is Organum Mathematicum
[62], which Kircher designed for Prince Karl Joseph from Austria. It contained all the
mathematical knowledge necessary for the prince. Simple arithmetic, geometric and
astronomical calculations were made by manipulating wooden rods. It was possible to write
messages with a digital code, design reinforcements, calculate the Easter date, and compose
music. Although Kircher declared that obtaining mathematical knowledge would not be
burdensome, many operations required mathematical fitness and memorization of long Latin
poems [114]". Abacus Harmonicus (Abacum Arithmetico-Harmonicum), the tabularist
method of creating music was described in the Musurgia Universalis [57], see also: [41],
[119]. Arca Musarithmica used the aleatorical method to compose music, which is described
as capable of producing millions of church anthems by a combination of selected musical
phrases. Kircher's “musical” ideas are highlighted by Donald Knuth in his fourth volume the
Art of Computer Programming. Generating All Rrees. History of Combinatorial Generation
[65, pp. 52, 53, 59, 74].

Kircher in the Polygraphia nova et universalis, ex combin atoria arte detecta (1663)
[58] designed not only polygraphy, an international language available to all, but also
steganography, a secret language for encrypting messages. In creating polygraphy, Kircher
used — as he himself writes — Lullus’ ars combinatoria.

In the introduction to the Polygraphia nova et universalis, ex combin atoria arte
detecta addressed to Emperor Ferdinand III Kircher wrote about polygraphy that all languages
are reduced to one (linguarum omnium ad unam reductio). Anyone who uses polygraphy,
even if he did not know anything other than his own speech, would be able to communicate
with anyone else, regardless of their nationality. This polygraphy would be basically
pasiography, i.e. a written language design or an international alphabet that would not have to
be spoken.

These actions are motivated by the desire to restore humanity to the language before
the mixing of languages, which is a consequence of the erection of the tower of Babel. These
are ideas for realizing the human longing for the perfect language spoken by Adam and Eve in
Paradise [26, pp. 196-200]. The longing to understand everyone, no matter what language he
or she speaks, is also cited in the New Testament, when on the day of sending the Holy Spirit,
everyone, no matter what country he or she was from or what language he or she was
speaking, understood what the apostles preached, although they spoke in their own language.

Kircher's distinction between two dictionaries could be associated with modern
methods of automatic translation: everything is translated into one distinguished language,
and from this language only into each other. Dictionary A was used for encoding and
dictionary B was used for decoding the message. For example,'” [58, pp. 9-14]:

XXVIL36N XXX.21IN I1.5N XXII1.8D XXVIIIL.10 XXX.20
was decoded to Latin as:

Petrus noster amicus, venit ad nos.
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According to Knittel, Kircher created clavis universalis, a universal key, opening access to the
secrets of the universe [31, p. 5].

3.6. Universal Language

The 17th century is fertile in the concepts of artificial languages. A universal language was
sought, understood as a language in which all courts and concepts could be expressed and,
moreover, capable of accounting processing. It would be the language of invention in the
sense of Hobbes.

John Wilkins (1614 — 1672), one of the geniuses of that time, had the task of creating a
universal language. He knew Kircher's work [136, p. 452]. In the Essay towards a Real
Character and a Philosophical Language (1668) [136], where he presented his concept of
language, there is no mention of Hobbs — and he was, like Wilkins, an English philosopher.
There is no mention of Leibniz, but his Dissertatio de Arte Combinatoria (1666) [69] was
published two years earlier than Wilkins the Essay towards a Real Character and a
Philosophical Language (1668). It turns out that Wilkins' precursor was Dalgarno, the author
of Ars Signorum [20], cited by Leibniz.

Wilkins was mindful of the universal language, which would primarily facilitate an
international communication of scholars. It was supposed to replace Latin, though it had a
thousand-year history in the teaching of the Christian world. Latin, he declared, was difficult
to learn. Unlike other projects of that time, the new universal language was supposed to be
only a secondary language. Lingua franca could also be used for diplomacy, travel, trade and
other situations [137].

The lingua franca scheme based on mathematical coding was published in 1630 by an
English mathematician John Pell [92, p. 55]. The idea of simplifying Latin was also close to
Giuseppe Peano (1858 — 1932) [53], a famous Italian mathematician who proposed Latin
without flexion in the Latino sine flexione, Interlingua de Academia pro Interlingua (1903)
[100]. In the context of our deliberations, it is worth highlighting Peano's reference to Leibniz
by placing samples of his writings as a motto to individual paragraphs of his text. In 1926
‘Instituto pro Interlingua’ was established to continue the work. Until 1939, the Institute
published the journal ‘Schola et Vita’ [7, p. 154].

4. Gottfried Wilhelm von Leibniz

Gottfried Wilhelm von Leibniz (1646 — 1716) was a scholar to whom many who referred, in
particular Frege, who, writing Begriffsschrift (1879) [33], pursued the idea of universal
language, lingua characteristica and formal calculation, calculus ratiocinator.

In the Leibniz concept, all the rational elements of Lullist inquiries have been
accumulated. He took over Hobbes' heritage of the arithmetic philosophy of language. He
developed his ideas of artificial language and symbolic systems [28].

In the letter to Hobbes of July 1670 [78, pp. 105-106], he wrote that he had read
almost all of his works and that he had used them as with few others. This letter was not
delivered to Hobbes and later remained only as a sketch [115].

Leibniz as a student became familiar with the late-scholastic thought of Jesuit
Francisco Suérez (1548 — 1617), who enjoyed respect at Lutheran universities. The
relationship between Leibniz and another Jesuit is interesting, namely Athanasius Kircher
[36]. In the ‘Synopsis Dissertationis De Arte Combinatoria’, the Dissertatio de arte
combinatoria (1666) [69] refers to Lullus and his art. He learned about it mainly through
Kircher's work. 16 May 1670 he wrote a letter to Kircher [36, pp. 229-231] and received a
reply on 23 June 28 [36, pp. 232-233]. Leibniz in the letter refers to his Dissertatio de arte
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combinatoria [69] and expresses admiration for Kircher's newly published work Ars Magna
(1669) [59]. The value of ars combinatoria sees in its function as a logica inventoria and in
the development of scriptura universalis. He writes about its use in the attempts to establish a
new order and the basis of the system of law at that time. However, it emphasizes its
fundamental function as a general basis for scientific knowledge. It was close to Kircher, who
himself pointed to the important role of ars combinatoria tor the solidifying of such different
sciences as mathematics, medicine, law study, and theology. Leibniz was also interested in
Kircher's writings about Egypt and China.

Leibniz's concept of thinking as a calculation takes over from Hobbs. It remains for
him to determine what the units are (parcel) that Hobbes refers to as arguments of accounting
operations. The concept of Lullus’ art, developed in the Dissertatio de arte combinatorial
[69], written at the age of 19, integrated with its metaphysics and philosophy of science.

The Dissertatio de arte combinatoria is an extended version of the PhD dissertation
that was prepared before Leibniz undertook his mathematical research. The release in 1690
resumed without Leibniz's consent. Leibniz has repeatedly expressed his regret that there is a
version in circulation that he considers immature.

Examples of problems to which the ars combinatoria are applied are issues from the
law, music, the Aristotelian concept of four types of matter (presented in the form of diagram,
and thus in a manner typical of Lullus), all of which is complex, and above all — from the
point of view of the subject that we are interested in, but also of what has been the test of time
— are applications to reasoning.

Leibniz is considered the most prominent logician from Aristotle until George Boole
who published the Mathematical Analysis of Logic: Being an Essay Towards a Calculus of
Deduction Reasoning (1847) [11], and Augustus de Morgan who pblished the Formal Logic:
or, The Calculus of Inference, Necessary and Probable (1847) [23].

Leibniz wanted the universal language to make it possible to make the rules of
calculations logical. He wrote [77, p. 664]:

At the same time this could be a kind of universal language or writing, though
infinitely different from all such languages which have been proposed, for the
characters and the words themselves give directions to reason, and the errors —
except those of fact — would be only mistakes in calculation. It would be very
difficult to form or invent this language or characteristic but very easy to learn it
without any dictionaries.

In the letter to the mathematician G. F. A. L'Hospital, we read [22, chapter 1] that the part of
the “algebra” secret is included in the characteristics, i.e. in the art of proper use of symbolic
expressions. A concern for the proper use of the symbol would be filium Ariadne, which
would lead the researchers in creating this characteristic.

In the Dissertatio de arte combinatoria he criticized Lullus' ‘alphabet’ as limited and
proposed an alternative, extended, and instead of letters he considered it appropriate to use
numbers. For example, he proposed that ‘2’ should represent space, ‘between’ should be
represented by ‘3’ and the whole by ‘10°. This encoding encodes ‘episode’ as 2.3.10. By
digital encoding, all problems will be reduced to mathematical problems and solved by
accounting operations. This idea anticipates the modern Al [28]. Digital coding has already
been used by other Lullists of Leibniz's predecessors.

When we proclaim the researcher's contribution to scientific development, we
take into account what Leibniz knew when he wrote [77, p. 664]:
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[...] Besides taking care to direct my study toward edification, I have tried to
uncover and unite the truth buried and scattered under the opinions of all the
different philosophical sects, and I believe I have added something of my own
which takes a few steps forward.

Leibniz's contribution to the development of the Al concept is noted, first of all, in two new
novelties of his inquiries, or rather — which would be more cautious given that one can find
predecessors — in indicating relevance and subsequent impact, first of all, in a situation where
our knowledge is not certain and we have to settle for probability and, second, not only
cognitive, but also ontological location of the binary system.

Al is supposed to behave like a man who doesn't make a mistake. Al must therefore
also deal with situations that human beings deal with, in particular when taking decisions and
acting in conditions of incomplete or uncertain information. This aspect is noted by Leibniz
(in relation to the universal language, which in the context of his speech we can understand as
a “thinking machine”). Leibniz [77, p. 664] wrote:

When we lack sufficient data to arrive at certainty in our truths, it would also
serve to estimate degrees of probability and to see what is needed to provide this
certainty. Such an estimate would be most important for the problems of life and
for practical considerations, where our errors in estimating probabilities often
amount to more than half[...]

Leibniz in many texts and letters written between 1679 and 1697, i.e. for eighteen years,
developed a notation and solved an algorithmic (mechanical) execution of arithmetic
operations. He also drew up a draft of rules for the binary machine, using balls and holes,
sticks and grooves to move them'? [70], [72], [116], [126], [127].

Leibniz considered the idea of three-valued logic in the Specimina Iuriss III [113,
1931, p. 20].

The binary system as the basis of machine counting is also indicated by the prominent
English inventor Thomas Fowler (1777 — 1843), who also designed a wooden ‘computer,’
operating according to the rules of ternary system14 [131].

In January 1697 Leibniz, with his birthday wishes, sent the letter to his protector
Prince Rudolf Augusta of Brunswick (Herzog von Braunschweig-Wolfenbiittel Rudolph
August), discussing the binary system and the idea of creation with 0 as nothingness and 1 as
God [120].

For Leibniz [71], nothingness and darkness correspond to zero, while the radiant spirit
of God corresponds to one. For he thought that all combinations arose from unity and
nothingness, which is similar to when it was said that God had done everything out of nothing
and that there were only two principles: God and nothingness. He designed a medal, whose
main theme was imago creationis and ex nihil ducendis Sufficit Unum. One corresponds to the
Sun, which radiates to the shapeless earth, zero. He referred to Pythagoras and Plato. From the
spirit it was Kabbalistic, it was embedded in gematry.

The idea of binary code is not new [84]. Leibniz himself pointed to the predecessor in
the person of the thirteenth-century Arabic mathematician Abdallah Beidhawy. In
approximately 1600 the binary notation was used by the English astronomer Thomas Harriot.
Shirley writes about his achievements [118]:

Though it is frequently stated that binary numeration was first formally proposed

by Leibniz as an illustration of his dualistic philosophy, the mathematical papers
of Thomas Hariot (1560 — 1621) show clearly that Harriot not only experimented
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with number systems, but also understood clearly the theory and practice of binary
numeration nearly a century before Leibniz’s time.

A similar opinion is given by [47]:

He is probably the first inventor of the binary system, as several manuscripts in
his legacy show. In the binary system, he uses the numerals 0 and 1 and shows
examples of how to move from the decimal system to the binary system and vice
versa (conversion or reduction). Using further examples, he demonstrates the
basic arithmetic operations.

Ineichen had the first publication on the binary system, in 1670. Two-volume book Mathesis
biceps vetus et nova (1670) [48] by loannis Caramuelis. Either way, Leibniz developed a
binary system, which is how to perform both arithmetic operations — as he described it — and
logical operations — as Boole did. With his conviction that everything is created from 0 and 1,
he anticipated what modern computer science is doing, that all information can be written in
binaries. The ontological thesis about the world as created by 1 using 0 opened up new
perspectives for linking the information system to metaphysics. While praising his binary
arithmetic Leibniz claimed [79]:

tamen ubi Arithmeticam meam Binariam excogitavi, antequam Fohianorum
characterum in mentem venirent, pulcherrimam in ea latere judicavi imaginem
creationis, seu originis rerum ex nihilo per potentiam summae Unitatis, seu Dei.

But when I invented my binary arithmetic, before I became familiar with the
symbols of Foha, I recognized in them the most beautiful image of creation, that
is, the origin of things from nothing thanks to the highest power of Unity, that is,
God.

This idea of Leibniz was so fascinating that it was passed on to Father Grimaldi, a
mathematician at the of court of the Emperor of China, in the hope that it would lead to the
conversion of the Emperor and, with him, to the Christianization of the whole of China [71].

After 1703, i.e. after the publication of Explication de I’arithmétique binaire, qui se
sert des seuls caracteres 0 et 1, avec des remarques sur son utilité, et sur ce quélle donne le
sens des anciennes figures Chinoises de Fohy [72], there is an increase of interest in systems
that are not decimal. The use of binary in computers was ultimately determined only by the
Burk-Goldstine — Von Neuman Report of 1947, in which we read [13, p. 105]:

An additional point that deserves emphasis is this: An important part of the
machine is not arithmetical, but logical in nature. Now logics, being a yes-no
system, is fundamentally binary. Therefore, a binary arrangement of the
arithmetical organs contributes very significantly towards a more homogeneous
machine, which can be better integrated and is more efficient.

Giuseppe Peano (1858 — 1932) designed an abstract shorthand machine based on the
binary encoding of all Italian syllables between 1887 and 1901. Together with
phonemes using 16 bits (so it had 65,536 combinations), 25 letters of the (Italian)
alphabet and 10 digits were encoded. Peano's code was not noticed and was forgotten.
The American Standard Code for Information Interchange (ASCII) and its various
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extensions are used in today's coding computers. Since 2007 coding on the Internet is
done using UTF-8, which is backwards compatible with ASCII.

The idea that everything is created from 0 and 1 is the reason why the creator of
the algorithmic theory of information Chaitin — as he writes not quite seriously —
proposes to name the basic unit of information not ‘bit’ but ‘leibniz’ [15], [125]:

[...] all of information theory derives from Leibniz, for he was the first to
emphasize the creative combinatorial potential of the 0 and 1 bit, and how
everything can be built up from this one elemental choice, from these two
elemental possibilities. So, perhaps not entirely seriously, I should propose
changing the name of the unit of information from the bit to the leibniz!

The ‘leibniz’ unit could be the unit (parcel) that Hobbes wrote about. Leibniz was convinced
that the world was designed according to the principles of mathematics. This thought is
abbreviated [78, p. 191]:

Cum Deus calculat et cogitationem exercet, fit mundus
When God thinks about things and accounts, the world appears.

Mathematics is the tool of the Constructor of the world, and numbers are the material
from which the world is made. This idea is based on the Old Testament Book of Wisdom
(canonical for Catholics and Orthodox Christians, Ethiopian and Syrian Christians — it
was created in the Hellenistic world), in which we read (11:20):

But you have arranged all things by measure and number and weight!

The idea of world mathematics lies at the heart of modern natural science, the origins of
which are usually related to the speech of Galileo, who claimed that the book of nature
is written in the language of mathematics.

If thinking is a calculation, and the world is made of numbers, then we will come
to any truth that we can come to, by the way of accounting. Thus [75, vol. 7, p. 200]":

Quo facto, quando orientur controversiae, non magis disputatione opus erit inter
duos philosophos, quam inter duos Computistas. Sufficiet enim calamos in manus
sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere: c al ¢
ulemus.

If the dispute had arisen, the dispute between the two philosophers would not have
required much effort than between the two accountants. For it would be sufficient
for them to take pencils into their hands, to sit by their slats, and one to the other
(with a friend as a witness if they wished) to say: Let's count.

Calculating is an activity in which a machine can replace a human. In 1685, in discussing the
value for astronomers of a machine invented in 1673 more efficient than pascalina and
performing all basic arithmetic activities, he wrote [22, chapter I: Leibniz's Dream], [76, p.
181] that:
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For it is unworthy of excellent men to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if the machine were
used.

This pragmatic argument with the above metaphysical arguments can inspire computer
science and the development of its tools towards artificial intelligence. All truths have a
numerical representation, and thinking is represented by numerical operations, and all this can
be done by the machine.

Frege critically continues the Leibnizian program, as he writes in the introduction to
the published Begriffsschrift [33], [34, p. XI]:

Auch Leibniz hat die Vortheile einer angemessenem Bezeichnungsweise erkannt,
vielleicht iiberschitzt. Sein Gedanke einer allgemeinen Charakteristik, eines
calculus philosophicus oder ratiocinator war zu riesenhaft, als dass Versuch ihn zu
verwirklichen {iber die blossen Vorbereitungen hitte hinausgelangen kdnnen. Die
Begeisterung, welche seinen Urheber bei der Erwigung ergrift, welch
unermessliche Vermehrung der geistigen Kraft der Menschheit aus einer die
Sachen selbst treffenden Bezeichnungsweise entspringen wiirde, liess ihn die
Schwierigkeiten zu gering schitzen, die einem solchen Unternechmen
entgegenstehen.

Wenn aber auch dies hohe Ziel mit Einem Anlaufe nicht erreicht werden kann, so
braucht man doch an einer langsamen, schrittweisen Anndherung nicht zu
verzweifeln. Wenn eine Aufgabe in ihrer vollen Allgemeinheit unldsbar scheint,
so beschrinke man sie verldufig; dann wird vielleicht durch allméhliche
Erweiterung ihre Bewiltignung gelingen. Man kann in den arithmetischen,
geometrischen, chemischen Zeichen Verwirklichungen des Leibnizischen
Gedankens fiir einzelnen Gebiete sehen. Die hier vorgeschlagene Begriffsschrift
fligt diesen ein neues hinzu und zwar das in der Mitte gelegene, welches allen
anderen benachbart ist. Von hier aus lédsst sich daher mit der grosten Aussicht auf
Erfolg eine Ausfiillung der Liicken der bestehenden Formelsprache, eine
Verbindung ihrer einzigen und eine Ausdehnung auf Gebiete ins Werk setzen, die
bisher einer solchen ermangelten.

Leibniz also recognized the advantages of a suitable method of labeling, perhaps
overestimated by him. His idea of universal characterization, calculus philosophicus or
ratiocinator, was too titanic, so that the attempt to make it a reality could only be achieved by
preparation. The enthusiasm which took over his initiator in considering how it unimaginably
multiplied the spiritual power of mankind, which would in fact flow from the proper way of
marking, made it estimate the difficulties too weakly that such an undertaking would
encounter. When they did not reach the target at one time, they should not be doubted as they
approached slowly in steps.

When a task in its entirety seems insoluble, it is temporarily restricted; then, perhaps,
through a gradual enlargement, it will be resolved. Arithmetic, geometric, and chemical signs
can be seen as the realization of Leibniz's idea for these particular fields. Here, the proposed
conceptual letter supplements them with new ones and, although it is in the middle, what is
close to everyone else. Hence, it seems to have the biggest view of the success of filling this
gap in the existing formula language, by developing a combination of the individual and
extending to the areas that lacked it.

There's no idea of using a language designed by Frege in learning. Lingua universalis
brings us closer to programming languages. John McCarthy, one of the initiators of modern
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Al research, created the LISP'® programming language. Today LISP is a family of such
languages.

Leibniz was not only interested in the Kabbalah, but the concepts of Kabbalah,
especially those of Lurian, had an impact on his views and actions mainly thanks to
Franciscus Mercurius van Helmont (1614 — c. 1698/1699), who was a frequent visitor in
Hanover and with whom Leibniz spent much time. He had already learnt the Kabbalah as a
student. In the 17th century, in the times of the Enlightenment, Platonism, Kabbalism, and
Gnosticism were popular, especially in Protestant Germany. In the case of ecumenical
Christians like van Helmont, the Kabbalah had a significant impact on their optimistic non-
dogmatic philosophy [18]. Leibniz, at the end of his life, accepted the radical Kabbalistic idea
of tikkun, and the belief was that all things would ultimately be perfected by recurring
transformations.

He believed in progress. He was involved in efforts to improve human health through
ecumenical action, the promotion of tolerance, and the development of education and science.
Leibniz's attitude to knowledge was expressed by the theoria cum praxis formula, which is
the motto of the Kurfiirstlich Brandenburgischen Sozietidt der Wissenschaften (now: Berlin-
Brandenburgischen Akademie der Wissenschaften). Leibniz-Sozietit der Wissenschaften'’
uses the motto: theoria cum praxis et bonum commune. He claimed that if we consider
disciplines in and for ourselves, they are all theoretical; if we consider them from the point of
view of application, they are all practical.

Socially useful ideas were also meant to improve life. He was very interested in
various kinds of inventions, for example. He corresponded with Papin, who was building a
steam machine — which Frege comments on later [35]. Leibniz [76] is known as the designer
of the calculating machine. He had the idea since 1672. The first structures, as the documents
show, took place between 1674 and 1685. The so-called older machine was made in the years
1686 — 1694. The younger machine, which behaved, was built in the years 1690 — 1720. In
Gottingen in 1879, the original of the instrument was found. One of the copies which he had
constructed Leibniz had given to Peter the Great and the latter gave it to the emperor of
China. Leibniz designed a high-speed car that would travel along the road like a ball bearing,
designed drainage in Hartzu mines, a navigation system, utilization of wasted heat furnaces,
tax reform, public health services, including epidemic-related, fire protection, steam
fountains, street lighting, and state bank. He was even interested in mundane matters such as
wheelbarrows or cooking pots. He designed shoes with springs so that he could walk faster.

These ideas and projects were considered in the company of van Helmont.

Leibniz can be considered the last one for whom Lullus' ideas were the direct
inspiration of their philosophical concepts and which proved to find a permanent place in the
history of science and philosophy.

5. Forgotten Scholars

Even though it may be assumed that Kircher's project knowledge is not taking Leibnizian
“thinking machines” as the Lullists understood them. Yes, he built a counting machine with
new technical solutions compared to Pascalina. He designed a binary computer. Despite many
other ideas, there is no device that would implement Lullus’ ideas, as was the case with
Kircher. Does he think that the function of the “thinking” machine will be taken over by the
counting machine, for which he had a theoretical basis? And that only such a machine will be
fit for the purposes that could be served by ars combin atoria?

Leibniz seems to have only pragmatic designs, as it was with Pascalina, which Pascal
built to facilitate the work of his father, a tax collector, so Leibniz worked to improve human
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health. Even the famous “Calculemus!” can be interpreted as a tool for achieving social
consensus, which was one of the goals that Leibniz set for himself.

Grimaldi, a Jesuit mathematician at the court of the Emperor of China, informed him
with a fascinating binary system in the hope that with it he would lead to the conversion of the
Emperor and, with him, to the Christianization of all of China [71]:

Daher, weilen ich anitzo nach China schreibe an den Pater Grimaldi, Jesuiter
Ordens, Priasidenten des mathematischen Tribunals daselbst, mit dem ich zu Rom
bekannt worden, und der mir auf seiner Riickreise nach China, von Goa aus,
geschrieben; so habe gut gefunden, ithm diese Vorstellung der Zahlen
mitzutheilen, in der Hoffnung, weilen er mir selbst erzéhlet, dal der Monarch
dieses méachtigen Reichs ein sehr gro3er Liebhaber der Rechenkunst sey, und auch
die europidische Weise zu rechnen, von dem Pater Verbiest, des Grimaldi Vorfahr,
gelernet; es mochte vielleicht dieses Vorbild des Geheimnisses der Schopfung
dienen, ihm des christlichen Glaubens Vortrefflichkeit mehr und mehr vor Augen
zu legen.

Therefore, because I am writing to China to Father Grimaldi, of the Jesuit Order,
the chairman of the mathematical college of the same one with whom I met in
Rome, and who wrote to me on the way back to China, from Goa; so I thought it
appropriate to inform him of this presentation of figures, in hope, because he
himself told that the monarch of this powerful empire is a very great enthusiast of
the art of accounting, and also from father Verbiest, the predecessor of Grimaldi,
who learned the European way of accounting; that perhaps this depiction of the
mystery of creation could serve to give him the ever more glorious Christian faith
first hand.

In the Leibniz era, Athanasius Kircher realized the most successful Al project. This theory
does not in any way detract from Leibniz's scientific and philosophical achievements. It
belongs to those thinkers to whom are sometimes attributed more. An example is the case of
Leibniz's contribution to the development of modern logic. According to Peckhaus [105]: The
development of modern logic in the UK and Germany in the second half of the 19th century
can only be explained as an unconscious first, and only later a conscious reference to the
Leibnizian program. Hence, the assessment of the importance of Leibniz's logic for the
development of modern logic must be greatly relativized. In another previous work, Peckhaus
wrote [103, p. 436]:

The development of the new logic started in 1847, completely independent of
earlier anticipations, e.g., by the German rationalist Gottfried Wilhelm Leibniz
(1646 — 1716) and his followers [104], [102, ch. 5].

The question is why Kircher's work has been forgotten. A similar question can also be posed
in the case of Leibniz, who was already forgotten during his lifetime, reflected in that his
funeral was attended only by a personal secretary. Although he was a member of the Royal
Society and Konigliche-PreuBische Akademie der Wissenschaften, none of these institutions
honored him in any way in connection with his death, and his grave remained forgotten for
more than 50 years.

Athanasius Kircher had a Catholic funeral, which was solemn. His heart was deposited
in a church in Santuario della Mentorella. In 1661 Kircher found the ruins of that church,
which he thought was from the days of Constantine. Kircher, by his own accord, had it
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rebuilt. What caused Kircher's to be forgotten for three centuries? How did it happen that “a
giant among seventeenth-century scholars” and “one of the last thinkers who could rightfully
claim all knowledge as his domain” [19, p. 68] fell into oblivion for three centuries?

Descartes declared Kircher more a charlatan than a wise man and as someone with an
aberrational imagination. The pretext for such opinions was Kircher's description of the
experiment with plant heliotropism, which apparently was not understood by Descartes.
Kircher pointed to the magnetic link between the Sun and plants by experimenting with a
sunflower floating in the water on cork. When the flower was spinning behind the Sun, the
clue indicated the time. Kircher, as the reason for the inaccuracy indicated, blocked the
attracting light through glass, which protected against the inaccuracy that the wind could
cause. Descartes interpreted Kircher's description as referring to earlier speculation that
attributed the heliotropic properties of sunflower seeds floating in a cup of scale. Although
Kircher described experiments with other heliotropic plants, Descartes stayed at his side and
launched an unbridled attack on Kircher. Descartes' authority in the emerging science
according to a rational paradigm was so great that Kircher's reputation was permanently
damaged. Even Nicolas-Claude Fabri de Peiresc (1580 — 1637), a longstanding supporter of
Kircher, became suspicious. Despite his criticism, Kircher maintained his version of the
sunflower clock, occasionally modifying and demonstrating its proper functioning. In the
Magnes, sive de arte Magnetica (1641) [1] he noticed that this kind of clock works only a
month, even when it is nurtured with the greatest care — nothing is perfect in every aspect.

In the Mundus subterraneus (1678) [60] Kircher writes about various creatures that
live underground, including dragons, in which he believed himself as the last scholar.
Rationalists are less spontaneous, but Kircher was also on the right track to recognize
microbes as the cause of disease, to discover the rules of volcanism and even to formulate
some prototheory of evolution.

Huygens in the letter to Descartes [24, vol. III, p. 802] of January 7, 1643 makes a
marginal and disrespectful mention of Kircher's magnet'®. In response Descartes reads [24,
vol. III, pp. 803-804]:

Je sais bien que vous n’avez point affaire de ces gros livres, mais affin que vous
ne me blasmiez pas d’employer trop de temps a les lire, je ne les ai pas voulu
garder d’avantage. J’ai eu assez de patience pour les feuilleter, et je croy avoir vii
tout ce qu’ils contienent, bien que je n’en aie gueres leu que les titres et les
marges.

Le Jesuite a quantité de forfanteries, il est plus charletan que s¢avant. Il parle entre
autres choses d’une maticre, qu’il dit avoir eu d’un marchand Arabe, qui tourne
nuit et jour vers le soleil. Si cela etait vrai la chose serait curieuse, mais il
n’explique point quelle est cete maticre. Le pere Mersenne m’a ecrit autrefois, il y
a environ 8 ans, que c’etait de la graine d’heliotropium, ce que ie ne crois pas, si
ce n’est que cete graine ait plus de force en Arabie qu’en ce pais, car ie fus assez
de loisir pour en faire I’experience, mais elle ne reussit point. Pour la variation de
I’aimant, 1’ai toujours cru qu’elle ne procedait que des inégalitez de la terre, en
sorte que 1’aiguille se tourne vers le coté ou il y a le plus de la matiere qui est
propre a I’attirer: et parce que cete matiere peut changer de lieu dans le fonds de la
mer ou dans les concavites de la terre sans que les hommes le puissent savoir, il
m’a semblé que ce changement de variation qui a eté observé a Londres, et aussi
en quelques autres endroits, ainsi que raporte votre Kircherus, etait seulement une
question de fait, et que la philosophie n’y avait pas grand droit.
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I know you have nothing to do with these books, but because you don't blame me
for spending too much time reading them, so I didn't want to keep them anymore.
I had enough patience to review them, and I think I've seen everything they
contain, even though I've only drawn attention to their titles and indications on the
margins. This Jesuit has a lot of child in him and is more a charlatan than a
scholar. Among other things, he talks about an issue he claims he received from
an Arab merchant who turns day and night toward the Sun. If that were the case,
the matter would be interesting, but it does not explain at all what this is about.
My father Mersenne wrote to me in the past, about eight years ago, that these are
heliotropic seeds, which I don't believe, except that this grain has more strength in
Arabia than in this country, because I had enough time to do the experiments, but
I didn't. As for the deflection of the magnet, I always thought it was only from the
unevenness of the earth, so that the needle rotates in the direction where the most
matter is, which is suitable to attract it; and because this matter could change its
place on the seabed or in the concavities of the earth, which people cannot know,
it seemed to me that this shift in deflection observed in London, and also in
several other places, as Kircher reports, was only a matter of fact, and that whole
philosophy had little to do with it.

Kircher knew Descartes' opinion. A. Baillet, the biographer of Descartes [24, vol. IV, p.
413] writes:

Le Pére Kircher ne fut pas long-temps sans changer de sentiment a 1’égard de M.
Descartes, dont il rechercha 1’amitié par la médiation du P. Mersenne; et M.
Descartes, outre des compliments et des recommandations de lui, reclit encore ce
qu’il avait écrit de la nature et des effets de I’aiman, et y fit quelques observations
qui se sont trouvées aprés sa mort parmi ses papiers.

Father Kircher soon changed his feelings to Descartes and via father Mersenne sought
friendship with him; but Descartes, in addition to compliments and advice given to him,
continued to sustain what he wrote about the nature and operation of the magnet, and
made some observations that were found after his death among his documents. One
more negative review is included in the letter to Colvius [24, vol. IV, p. 718]:

Il y a longtemps que j’ai parcouru Kirkerus; mais je n’y ai rien trouvé de solide. Il
n’a que de forfanteries a I’italiene, quoi qu’il soit Allemand de nation.

It's been a long time since I've read Kircher, but i didn't find anything solid there.
There is nothing there except childish tricks of Italian, although he is German.

Perhaps not only Descartes' opinion, but also the spirit of the age contributed. Also Descartes,
who was another Jesuit educator, equated Jesuit intellectualism with the Inquisition that
imprisoned Galileo and sentenced Giordano Bruno [52, pp. 95-96].

Why, four centuries after Kircher's birth, was there interest in his person and
creativity? Is it because of eccletism and some similarity to postmodern thinking? [39, p. 272]
explains a reason:

his effort to know everything and to share everything he knew, for asking a

thousand questions about the world around him, and for getting so many others to
ask questions about his answers; for stimulating, as well as confounding and
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inadvertently amusing, so many minds; for having been a source of so many
ideas—right, wrong, half-right, half-baked, ridiculous, beautiful, and all
encompassing.

6. Conclusions

With the person and achievements of Gottfried Leibniz, the time of shaping the idea of
artificial intelligence is over, and the history of artificial intelligence begins. From Leibniz the
way leads to Turing not only when it comes to the universal computer [21], but also when it
comes to artificial intelligence. Leibniz believed in its implementation. He wrote [77, p. 664]:

I should venture to add that if I had been less distracted, or if I were younger or
had talented young men to help me, I should still hope to create a kind of
universal symbolistic [spécieuse générale] in which all truths of reason would be
reduced to a kind of calculus.

The development and applications of Al change our lives as Leibniz wanted, when he wrote
that it would be (characteristica universalis) the last effort of the human spirit, because when
the project is implemented, the human tool will have the ability to expand the possibilities of
reason, just like a telescope that removes vision and a microscope that enabled us to see the

interior of nature.
Thanks to it, ‘Leibniz an Heinrich Oldenburg’ [80, pp. 373-381]:

[...] inter loquendum ipsa phrasium vi lingua mentem praecurrente praeclaras
sententias effutient imprudentes, et suam ipsi scientiam mirantes, cum ineptiae
sese ipsae prodent nudo vultu, et ab ignarissimo quoque deprehendentur.

[...] while speaking, with the very power of wording, when the tongue is guided
by the mind, even the fools will speak very intelligent sentences, wondering at
their knowledge, without difficulty defeating their mental inability, and even the
most stupid will understand these words.

We now come to make the judgment that Leibniz called for when he wrote, ‘Leibniz an
Heinrich Oldenburg’ [80, pp. 373-381]:

Quantam nunc fore putas felicitatem nostram si centum ab hinc annis talis lingua
coepisset.

It means:

Judge how fortunate our happiness will be if, in a hundred years from now, such a
language will arise.

For his machine arithmetica Leibniz designed a medal with the inscription [3, pp. 307-308]":

SUPRA HOMINEM
— better than mankind.

However, today as artificial intelligence becomes more realistic, it raises more fears than
hopes.
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the sciences | principles and rules are subordinate to it [ = the Kabbalah ] principles and rules;
and therefore their [ = the sciences | mode of argumentation is insufficient without it [ = the
Kabbalah |7 [111].
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Museum of Prehistory and Ethnography.
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11. A student of Athanasius Kircher, Gaspar Schott, publishes a treatises on the wonders of
scientific innovation, please see: http://www.rarebookroom.org/pdfDescriptions/schioc.pdf
[02.02.2020].

12. An appropriate phrase in Latin: Petrus noster amicus, venit ad nos qui portavit tuas
litteras ex quibus intellexi tuum animum atque faciam iuxta tuam voluntatem.
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13. The model of Leibniz-inspired binary machine was built in the years of 2003—-2004 by E.
Stein and G. Weber, Das Institut fiir Baumechanik und Numerische Mechanik, Leibniz
Universitidt Hannover.

14. The ternary calculating machine of Thomas Fowler, please see:
http://mortati.com/glusker/fowler/fowlerbio.htm [02.02.2020].

15. Similar statements are contained in other texts of the quoted volume, e.g. on pages [75,
pp. 26, 64-65, 125].

16. Name is formed from ‘LIST Processor.’

17. The web page of Leibniz-Sozietit der Wissenschaften zu Berlin e.V., please see:
http://www.leibnizsozietaet.de/ [02.02.2020].

18. For indicating the original texts of Descartes and their translation, and also additional data,
I thank Jerzy Kopani.

19.The full note is as follows: “Excogidad in curru inter Hanoveram et Peinam 14. October.
1895 G. L. R. Machina arithmetica cum verbis SUPRA HOMINEM. [Nam hominem
maximorum calculorum et promtitudine et securitate vincit.] Miramur ratio est divina quod
indita rebus: Suprahominem humana est machina facta manu. Quanta Deum fecisse
putas hominem super? Ecce Suprahominemhumana est machina facta manu.”
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Abstract

Departing from basic concepts in abstract logibss paper introduces two
concepts: conjunctive and disjunctive limits. Thesetions are used to
formalize levels of modal operators.

Keywords abstract logic, conjunctive limit, disjunctiveriit, modal logic, Jan
Wolenski.

1. Introduction

There are families of concepts organized by sonderoand some kind of hierarchy. This
phenomenon occurs in distinct areas of logic: seceg of sentences can be systematized to
highlight the most essential element in the seqeétie sovereign object in the hierarchy). In this
article, we use the concept of limit of a givenissace to redefine the notions of conjunctive limit
and disjunctive limit in the universe of abstramgit. By means of this strategy, we can formulate
specific standards of logical possibility as waeblgical necessity pointing out that the same
procedure could be extended to a great varietggfiences of objects (with very different natures,
indeed).

We start introducing main useful concepts fromtralos logic and, then, in section 3, we
present some notions such as thoseasfjunctive limit disjunctive limitas well the concepts of
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conjunctive logianddisjunctive logic In section 4, some of these ideas are appliedason about
levels of modal operators.

2. Conceptsin Abstract L ogics

We establish several basic preliminary and standangepts in the realm of general abstract logic
following initial ideas developed by Alfred Tarski [9] and [10]*> This approach to logical
consequence sounds awesome and very useful allousngo be well oriented through the
incredible plurality of rationalities displayed bye great variety of logical systems.

An abstract logicis a pair L = (S,Cp) such that S is a non-empty set and Gra map

Cn.:0(S)- O (S)
in the power set of S. The operator,Ghould satisfy:

i. Inclusiont A 0 Cn(A).
ii. ldempotencyCn(Cn(A)) = Cn(A).
lii. Monotonicity Cn(A) 00 Cn(A O B).
We call S thedomainor universeof L and Cn is its consequence operatoElements of S are
calledsentenceand, therefore, we are concerned with logical eqnence defined for sentenées.
As it is well-known, consequence operators areneoted with consequence relations by

means of a very natural relationship. Given anrabstogic L = (S,Cp), it is feasible to define a
binary relation

. O0O(S)xS
such that:
A b aiff (if and only if) aO Cn (A).
We call |4 theconsequence relationf L. It is easy to see that satisfies®

l. Inclusion If a0 A, then A |- a.
II. Transitivity. If B |-_a and A b for all b0 B then A |- a.
1. Monotonicity If A |- a and AO B, then B a.

| and Il are immediate. For Il, suppose thaila&n(B) and bl Cn(A) for all b0 B. Thus, BO
Cn(A). By idempotency and monotonicity, we have:

Cn(B) 0 Cn(Cn(A)) = Cn(A).

Then, a Cn(A), that is, Al- a.
Now, let L = (S,Cnp) be an abstract logic. We say that:

() AO S is Liimited iff Cn_(A) # S® Otherwise, A is Lunlimited
(b) A sentence €1 S is a Bsentenceff Cn({c}) is L-unlimited. Moreover, if tCJ Cn (J) we say
that t is a 1sentence

We denote byl andQ_ the set of all 1-sentences and 0-sentences, tesggcThe four
above notions are in some sense related with #dagitbnal concepts of consistency, inconsistency,
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contradiction and tautology, respectively. Herestheoncepts are dressed with new clothes to be
more adaptable to our purposes departing from argeperspective.

Let L = (S,Cnp) be an abstract logic. We can use the consequmperator Cpin order to
define a partial order in the set of sentences S.
If x, y O S, we define:

x<vyiff {x} .

It is clear thak is reflexive and transitive. Then, (X) is a partially ordered set. In this setting, we
can take into account upper and lower bounds, sugre infimum, maximal and minimal elements
etc.

We use Cnto define, for x, {1 S, an equivalence relation between elements of tha
following way:

x =y iff Cn({x}) = Cn_({y}).

In this case, we have: {x}+_y and {y} |4 x. It is easy to see thatis an equivalence relation and,
as usual, we have that:

X]=={y OS:x=y}L
Therefore, the quotient set is given by
SL={[x]=00(S) : xO S}.
The order relatios is transferred to the set.S/
[X] <[y]iffx <.

This construction does not depend on the repretbezgax and .

Given an abstract logic L = (S,Onif the setsl, andO_ are not empty, then the sd{sand
0. are the greatest and the lowest elements in thered set S/

Dealing with logics from this abstract viewpoimusids very elegant and useful, especially
considering the mess caused by the plurality ebmatities that one can find in the market. And,
more important, this approach is essential to ext definitions.

3. Conjunctive and Digjunctive Limits

The original ideas ofonjunctiveanddisjunctivelimits introduced in this section appeared insade
different framework in [4]. These concepts are hex@®rmulated in the spirit of abstract logic.
From now on, it follows the main contributions bis paper.

Consider an abstract logic L = (S;@nLet (%)io, be a sequence of elements of S. We say
that [x]= O SEL is aconjunctive limit of (X)ine, iff there exists KJ w such that for & k, we have {x}
[+ x; (or, that is the same,xx;). The set of all conjunctive limits of i, is denoted by IM°(x;).
Notice that if c is a 0-sentence, then:[g]0. is a conjunctive limit of all sequences of elenseit
S. This allows us to talk about a formula from whidl other formulas can be derivid.

The construction above can be dualized. We say[xha Sk is adigunctive limit of
(x))ioe iff there exists KJ w such that for & k, we have {§ I x (or, that is the same; € x). The
set of all disjunctive limits of (¥ is denoted by IMY(x;). In this case, if t is a 1-sentence, then
[t]= =1, is a disjunctive limit of all sequences of elenseot S. Now, this allows us to talk about a
formula which is a consequence of all other formaula
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An abstract logic L = (S,Ghis conjunctive iff for all sequence (¥, of elements of S, the
setLIM(x;) has the minimum. In this case, we define:

lim® (x;) := minL IM(x;)).

A logic L = (S, Cn) is properly conjunctive iff for all sequence (¥ of elements of S, the set
LIM® (x;) has the minimum that it is n6{.

We also have an immediate dual concept: an absdigic L = (S, Cn) is digunctive iff for
all sequence (¥, of elements of S, the setM“(x;) has the maximum. In this case, we define:

lim? (x) := max(1M9(x;)).

A logic L = (S, Cn) is properly digunctive iff for all sequence (¥ of elements of S, the set
LIM%x;) has the maximum that it is nt.

On one hand, if we consider classical propositidogic C, it is easy to see that C is a
conjunctive and disjunctive logic. But C is neith@operly conjunctive nor properly disjunctive.
For example, the sequence of all propositionalaldeis has no conjunctive and disjunctive limits
different from1. and0.. On the other hand, if we consider infinitary siaal propositional logic
C., with infinitary conjunctions and disjunctions, mave a properly conjunctive and disjunctive
logic.

The concept of &nitely trivializable systens used to refer to a logic containing a formula
from which everything (i.e. all formulas in the tarage) can be deduced (cf. [6]). We can say that
if a logic is conjunctive (but not properly conjuive), then it is finitely trivializable. In thisehse,
the system G in da Costa’s hierarchy is not a conjunctive logitile G is a conjunctive and a
disjunctive logic.

4. Limits of Sequences and Modal Operators

We have argued (with Hilan Bensusan) in [1] thgidal possibility and logical necessity are never
absolute in the precise sense that what is logigatissible in a given logic could be logically
impossible in a different logic and vice-versa. Hagne applies, then, for logical necessity and, in
more general terms, for all logical truths. Sasiinside a given logic that something is logically
possible or not. We take, then, logical possibilviyh respect to a given logic as the largest cphce
in such a way that all kinds of empirical posstiiljweaker possibilities) are particular casestof i
(let’s call them X-possibilities for X being a partlar theory, as suggested in [3]). In this wdy, i
something is X-possible, then it is logically pddsi(in a formal system taken as underlying logic
of a given theoryy. This obviously gives a clue to the fact that ladjipossibility is a kind of limit
of a sequence of modéformulas® Conversely, logical necessity can also be viewsed aort of
limit of a sequence of-formulas, considering that if something is a l@inecessity, then it is an
X-necessity. So, for this reason, let us conceatha&tre in the case of modal operators, especially
those of the forn® and of the form.

Assume a family of normal modal logics with fijtanany modal operators. Let,Y..,Y,
be this multimodal system such that for eaghh¥re is &; and a respective definablg From the
viewpoint of abstract logic, this system is a nmtidal abstract logic (S,Cn) such that S contains
sequences of modal operatos}{-, and {Ii}ioe. AS mentioned, these operators could represent
different kinds, degrees, levels of possibilitiesl @mecessities (X-possibilities and so on). Morepve
suppose that (S,Cn) is a properly conjunctive aprbperly disjunctive logic.

Let x be an element of S and consider the sequigrckn., of elements of S. In this way,
we could define logical possibilityin (S,Cn) as a disjunctive limit of this sequenbeat is:

0x := lim%(0ix) = max( IM4(©0ix)).
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Similarly, we could define the logical necessityin (S,Cn) as a conjunctive limit of this
sequence, that is:

Ox = imS(ix) = minL IMS(0ix)).

If we take logical possibility and logical necegsiis above, we could say that multimodal systems
with interactive axioms regulating levels of modgakrators can be viewed as logics in which there
are conjunctive and disjunctive limits. So, in thest case, we would have a logic (where
represents fusions of logics)

Y. O...0O0YyO (<>1a_> Oza)D 4 (<>n.1a_> <>na)

and logical possibilitypa isOna. The relevant fact is that all other kinds of gosity imply logical
possibility in such a way that this one can be @éwtherefore, as a disjunctive limit. In the saton
case, conversely, we would have a logic

Y10 .. OYnO ((had = Cng@) 0 ... O (b2 — [h2)

and logical necessitya isl,a. Now, the relevant fact is that logical necessitglies all kinds of
necessity and, therefore, it is a conjunctive lindb, in multimodal logics with ordered modal
operators, it is very natural to think about comwjine and disjunctive limits. Thus, we can say that
logical possibility is the disjunctive limit of a&guence of weaker sorts of possibilities (as each X
possibility implies logical possibility) and the @ulogical necessity is the conjunctive limit of a
sequence of stronger kinds of necessities (if sbhimgis a logical necessity, then it is X-neceskary

Considering that logical possibility (and its duagical necessity) are always determined
with respect to a given logic, it follows that taechies of weaker possibilities (and necessities) a
also with respect to a given logic. Therefore,dach logical diamond or box, we have a respective
hierarchy of X-possibilities (necessities) in ayioes theory.

5. Conclusion

Limits of sequences of formulas (and, in particulanodal formulas) have a wide variety of
applications. Treating logical possibility and logl necessity as disjunctive and conjunctive limits
suggests that it is feasible to define other dumicepts in a similar fashion. The notion of
disjunctive limitof a sequence involves the idea that the disjuadimit can be derived from any
element in the sequence, and it allows us to ddfieenotion ofdisjunctive logic The idea of
conjunctive limitof a sequence accepts that a conjunctive limitisa@ny element of the sequence,
and, as such, it can be used to defineonjunctive logic The contributions of this paper are
conceptual in the sense that definitions were desigo be applied in logical research. As in many
situations we find hierarchies of sentences, lindgtsn always be launched, and, therefore,
definitions suggested here have a large scope micapons. It seems that these abstractions also
facilitate attempts to model some situations inheatatics and philosophy.
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Notes

1. These two concepts were initially proposed in pti, without appeal to abstract logic.

2. A textbook relating ideas of algebra with logictie domains of algebraic logic and algebra of
logic can be found in [7].

3. We omit the subscript L.

4. Other forms of logical consequence could be defia&thg into account objects without making
any reference to the linguistic dimension of S.

5. Again, the subscript L is omitted.

6. This terminology is due to Jean-Yves Béziau in [2].

7. The subscript is omitted.

8. In classical logic, a contradiction has this rofeugh it is not like this in all formal systems.

9. A hierarchy of diamonds have been used in [3] tiddba combined logic of imagination, for
instance.

10. A previous characterization of diamonds and boxebnaits of sequences of modal operators
has been formerly developed in [5].

11. Cf. [8] for a roadmap with respect to combiningitsgn the environment of modal logics.
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Abstract

Roman Suszko said that “Obviously, any multiplicatof logical values is a mad
idea and, in fact, tukasiewicz did not actualizéThe aim of the present paper is
to qualify this ‘obvious’ statement through a numbélogical and philosophical
writings by Professor Jan Wadlgki, all focusing on the nature of truth-values and
their multiple uses in philosophy. It results imezonstruction of such an abstract
object, doing justice to what Suszko held a ‘madbjgct within a generalized
logic of judgments. Four main issues raised by \A&kewill be considered to test
the insightfulness of such generalized truth-valugsmely: the principle of
bivalence, the logic of scepticism, the cohereheety of truth, and nothingness.
Keywords bivalence, coherence, nothingness, partition séiog scepticism, Jan
Wolenski.

1. Introduction: Neither Frege, Nor Suszko (Therefoe Lukasiewicz?)

Suszko is known both for his eponymous acceptahdbeo'Suszko Thesis’, under which all logical
systems whose consequence operator satisfies itegoer of structurality (or of extensionality) are
bivalent systems, and for his rejection of the g&'e Axiom’ (FA). We are going to focus on the
latter, and more specifically on the different wayopposing it. Suszko [27] is in some way opposed
FA, which consists of two sub-propositions @A (FAy):

FA; The referent of a sentence is its truth-value.
FA, This truth-value is either the True or the False.

Suszko rejects FAand accepts FA According to him, sentences do not express tvathes but
situations, and this explains why Suszko distingess identity from material equivalence or
biconditional since the rejection of FAmplies that two sentences may have the same-valtle
without being identical. But there is another wayrgject FA, by reasoning in reverse to Suszko and
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accepting FA while rejecting FA. It is this position that we will associate withet name of
tukasiewicz and defend in this article, while segkio justify it through several writings of Protes
Wolenski. It will thus be a matter of defending one diren of Polish logic against another, namely:
many-valued logics of Lukasiewicz, as opposed &'lon-Fregean’ logic of Suszko.

Starting from a preliminary reflection on the mewanof the Principle of Contradiction (PC) and
its analysis by tukasiewicz, we will begin by digjuishing ‘sentences’ from ‘propositions’ and
endorsing the many-valuedness entailed by thetrejeof FA, through a general logic giidgments
Then we will review a certain number of logical gtiens treated by Jan Wakki in the light of this
logic of judgments: the Principle of Bivalence (PB)hd its various definitions; the relationship
between logic and scepticism, and the concept alitguthe relationship between coherence and truth
Tarski’s T-scheme, and the relativity of the cortagfptruth; negation, and the philosophical notafn
‘nothingness’. We hope that the logical framewagkuiting from our non-Suszkian rejection of FA
will confirm and clarify certain reflections of Hessor Woléski on all these matters. Last but not
least, we will insist on a formal tool essentiaintetalogical reflection and which Waleki frequently
uses in the articles treated here:ttieory of opposition

2. Frege’s Axiom and its Opponents

FA is neither true nor false strictly speakingngither are what Suszko and tukasiewicz said aibout
It is rather necessary to think of this metalogesom in terms of explanatory virtue: which pasmiti
with regard to FA is the most insightful, from axp&anatory point of view?

FA relates to PB, and Waiski [33], [34] pays attention to the ambiguous megrof the last
principle. In the first sense, bivalence means thay sentence is either true or false and thus
corresponds to FA In a second sense, bivalence means that anynsente true or is not. The
difference between the two interpretations restshenmeaning of ‘false”.A statement can be ‘not
true’ without being ‘false’ from a many-valued pbwf view. In response to the many-valued logics
promoted by tukasiewicz, Suszko distinguishes bebhmsvo kinds of truth-valuesilgebraic values,
which are combinations of single truth-values swach ‘true-and-false’ or ‘neither-true-nor-false’;
logical values, which are sets of values intended to ddbgical consequence in terms of preserving
truth. According to Suszko, there can only be twts ©f logical valuesdesignatedvalues, which
include truth;non-designatedalues, which exclude truth.

From a functional point of view, algebraic valuégrefore have no interest in providing no
essential information to characterize a consequerkdion in a given logical system. From an
explanatory point of view, on the other hand, w# tw to show in this article that the use of digaic
values is likely to shed light on philosophical cepts that a ‘Suszkian’ logic (without algebraic
values) would be unable to explain. The introductd ‘non-Tarskian” or many-valued consequence
relations [6], [12] was a first example of this &jrand we will try to see how a constructive apphoa
to truth-values can modify our way to understanties¢éogical and philosophical notions.

There is much more than one way of rejecting FAyafconsider this metalogical axiom as the
conjunction of two logically independent propositso The theory of oppositions can already helmpus t
clarify the situation on this point, by consideriRg as a binary proposition of type FA FA,. With
reference to the work of Piaget [13] and BlancHéJ& can affirm that any binary proposition, tiat
to say, any complex proposition including a bin&ogical operator, corresponds to a disjunction of
four fundamental propositions which are called mal conjunctive forms’. Thus, a binary proposition
of form f(p,q) refers to four logical possibilities: () andq are true together; (ip is true andy is false;
(iii) pis false andy is true; (iv)p andq are false together. Frege’s position on FA is bah FA and
FA, are true, while Suszko’s position is thatFA false and FAis true. Suszko thus defends a
‘counter-thesis’, since his position is incompagiblith that of Frege. But there is more than one
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conceivable counter-thesis: that which we will defen the rest of this work, and which consists in
saying that FAis true while FA is false.

Our position is almost the opposite of Suszko'dalst, there are far more than two FA counter-
theses if one considers FA as one of sixteen plessdmbinations. Indeed, FA means that; @fad
FA, are both true and thus represents a conjunctiegogition such that the two joint members must
be true to satisfy the molecular proposition FAWNdteen other types of combinations are possible
the light of the theory of propositional conjunetinormal forms. If we use the symbols 1 and 0O to
denote the satisfied and dissatisfied normal canjue forms, respectively, we obtain the following
combinatorial list including the positions of Fre§eiszko, and Lukasiewicz.

FA,FA, | FA,FA, | FA, FA, | FA; FA,
1) 1 1 1 1
(2) 1 1 1 0
(3) 1 1 0 1
(4) 1 0 1 1
(5) 0 1 1 1
(6) 1 1 0 0
(7) 1 0 0 1
(8) 0 0 1 1
(9) 0 1 1 0
(10)] © 1 0 1
(11) 1 0 1 0
(12) 1 0 0 0
(13)] 0 1 0 0
(14)] 0 0 1 0
(15)] 0 0 0 1
(16)| © 0 0 0

Frege’s position on FA thus corresponds to (123t tf Suszko corresponds to (14); the position that
we will defend, finally, is that represented by X1A8s for the thirteen remaining possibilities, ithe
absence from the debate produced between Freg&wasuko is simply due to their non-exclusive
form. Formula (2), for example, means an altermabigtween three possible attitudes: acceptdm
accept FA, or accept FAand reject FA, or reject FA and FA. In this sense, this formula symbolizes
the union of the three incompatible positions dééshby Frege, Suszko, and tukasiewicz. We can
also wonder about the meaning of the two limitiages (1) and (16): the first consists in admitatig

the possible positions about FAnd FA, while the second consists in admitting none. &Hesds of
acceptance can be described as ‘second order’ beesuse they relate to two propositions,FAA;
whose content is itself accepted or rejected bylegs. Thus Frege accepts (12) because he accepts
FA: and FA, but he rejects the other fifteen formulas by cijg at least one of the four possible
attitudes. Suszko accepts (14) by accepting theudet of rejecting FA and accepting FA but he
rejects all other combinations. We accept (13) tgepting FA and rejecting FA while rejecting all
other combinations of attitudes. The distinctiobws®n speech orders means that it makes sensg to sa
that a speaker accept to accept, accepts to reggatis to accept or rejects to reject any prdjposilt

also means that there are several levels of disepur accordance with the well-established distnc
between ‘object language’ and ‘metalanguage’. Beimantic abstraction will be important in the rest
of the article, especially in relation to the issé scepticism and the concept of nothingness.
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About FA, the presentation of the 16 attitudeshia form of a series of Boolean values 1-0
makes it possible to introduce the theory of oppmss in our present debate. Let us make a first
distinction between an antithesis and a countesighevhich are two logical relations established
between propositions or ‘theses’. Let AK) symbolizing the antithesis relation between te@sand
b, and let CT4,b) for the counter thesis relation betwesrandb. We can then explain these two
relations as follows:

+ the antithesisAT(a,b) meansa is contradictory with respect o and consists in adopting an
attitude opposite to it, turning any acceptanck efsymbolized by the value 1 — into a rejection
— symbolized by the value 0 (and vice versa);

+ thecounter-thesiCT(a,b) means that thesis a is simply incompatible wlid thesid, turning
any attitude of acceptance bfinto an attitude of rejection (but the conversecaot be the
case).

The three positions of Frege, Suszko and tukasewierefore have only one possible antithesis:
AT(12) = (5), AT(13) = (4), and AT(14) = (3). Ondlother hand, there are as many counter theses to
each of these attitudes as there are distinct lpbgss of rejecting what is accepted there. lhest
words, any counter thesis is a thesis which doesecuept what the initial thesis accepts but wiaiah
reject what the initial thesis rejects. There @mesta total of six counter theses available fortthee
attitudes of Frege, Suszko and tukasiewicz:

CT(12) = {(8).(9).(10),(13),(14),(15)}
CT(13) = {(7).(8),(11),(12),(14),(15)}
CT(14) = {(6).(7).(10),(12),(13),(15)}

Since most counter theses are unions of possitiledats, they have no philosophical relevance & th
singular positions (12), (13) and (14). But thistfiallusion to the theory of oppositions allowdestst

to sketch a first type of main opposition betwebre¢ of the sixteen attitudes abovetriad of
contrariesopposing FA (12), the criticism of his first pragibon by Suszko (13), and Lukasiewicz’'s
critique of his second proposition (14).

(12) (13)

(14)

The point is now to examine the content of FA atsdtivo main features, which are functionality
(through FA) and bivalence (through RA
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3. Pragmatic Contradiction

In his attempt to prove one of the fundamental@pies of ‘classical’ logic, i.e. PC, Jan tukasiewi
[10] has shown not only that it is unprovable blattit also rests on three distinct readings: an
‘ontological’ reading, by virtue of which PC saysat it is impossible for the same object to have a
property and not to have it at the same time; giclal’ reading, whereby PC means that a proposition
cannot be true and false at the same time; a ‘pdggital’ reading, by virtue of which PC says that
one cannot believe and not believe in the samenedd The formulation of the logical principle
divides those who present it in terms of the tvsihie of a proposition and those who formulateit i
terms of a proposition and its negation. Wesla [34], [35] will emphasize the two aspects of:RC
logical or ‘object language’ version, of form

~(p U~p)
and a metalogical version, of form
v(p) =Torv(p)=F

Although tukasiewicz quickly neglected the psyclyital version of PC, for the reason that subjects
often hold inconsistent beliefsthe example given in Lukasiewicz [10] evokes theyslar case of
religious belief in Trinity: it would be possible@ording to believe that God @&nd is not the same
individual as Father, Son or Holy Spirit, on thecasion of a religious experience that any good
Christian would be able to experience within thanfework of his faith. Although the empirical
objection to PC in its psychological version coh&ltaken seriously, tukasiewicz was more interested
in the ontological and logical foundations of threnpiple. These do not seem to be more solid than t
psychological version, especially since they argedleon an ambiguous vocabulary. The ontological
principle speaks of objects and refers to factstates of affairs obtaining in the world. The lagic
principle speaks sometimes of truth-values sometimé affirmation and negation, but both
cannot make sense without relying on a corresparedtreory of truth where facts make a proposition
‘true’. As for the ‘proposition’, it designates fro Aristotle onwards any sentence belonging to the
grammatical case of indicative and whose linguiBtitction is to tell something about the wontz.
what ‘the case’ i§.

We will not go into the details of this dission on the foundations of PC, since it goes beyon
our central point. We simply observe the followifiegy complications. First, the correspondence theory
of truth poses a problem on the conditionsfa$ity of a proposition: either the existence of a fact
which contradicts the proposition is necessary &kenit false, or the simple absence of fact to make
the proposition true entails its falsity. The cleomf the correct definition of falsity is importanére,
since it relates to the universality of PB as wasdlthe validity of PEM. Second, the psychological
version of PC makes use of concepts to which evergise can be reduced. A proposition is true if it
corresponds to an objective fact, by virtue of¢cbherespondence theory; but in the absence of sritic
means to prove the existence of such a fact, vhat‘proposition’ if not the public expression of a
belief expressed by a judgment? On the other haedg is a common confusion between two pairs of
concepts, namely: affirmation and negation, byimiision of truth and falsehood. We know that a
proposition can be negative and true, as in ‘Polandot a planet’, or affirmative and false, as in
‘Poland is a planet’. But what is a judgment, it tloe use by a speaker of a proposition in order to
sincerely express his own opinion on what ‘the cas2 Frege’s distinction between a judgeable
content and a judgment may be justified, but ils®e@iseless if the correspondence theory of truth is
unable to afford the conditions of correspondendth & ‘fact’ in an incontestable and definitive
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manner. We know that this theory must face thecakftilifficulties, and that two other competing
theories of truth face it: truth as coherence, #nth as consensus. Another radical solution could
remedy these philosophical difficulties: the ‘mimilist’ or ‘redundant’ theory of truth, according to
which the occurrence of the concept of truth ineatence is useless because it does not add any
substantial information to it. This last point oéw will come back in this article, when questiapithe
application of Tarski’'s T-schema.

For want of conclusive answer about the foundatiand the validity of PC, let us now try to
defend an alternative view and to assess its eafdan virtues: thepragmatic (or illocutionary)
interpretation of PC, which extends what tukasiewimalled the ‘psychological’ version while
eliminating its psychological connotation.

We will thus start by assuming that the conceptsuth and falsehood, but also the concepts of
affirmation and negation are nothing but items gkeaeral theory adpeech actan which it is not the
proposition but the judgment (or statement) whigdnstitutes the primary vehicle of meaning.
According to this approach, every statement haddgeal form Fp) and includes two elements: a
sentential conterp, which corresponds to Frege’s ‘judgeable contet’jllocutionary force F, which
carries the purpose that the sentential conterdupposed to express in a given dialogue. Since
everyday language has the defect of using the sapression for sentential contents, e.g. ‘The @®or
closed’, and for their ‘assertive’ use, let us aegl the first with a propositional concept suchTae
door’s being closed’. The assertive use of thiscephthus yields the speech act ‘The door is clpsed
but there are other uses of the same concept sutie act of questioning, ‘Is the door closed?, dlot
of giving an order, ‘Be the door closed!, etc.the case of the logical principles that concermer,
we can apply this theory of speech acts to leabitoe illocutionary interpretations of logical notso

Affirmation and negation are two types of asseraees intended to indicate to an interlocutor
what ‘the case’ is, and one of the central poimtscerns the question of whether these two acts are
interdependent or logically independent from eattteio ‘Truth’ and ‘falsehood’ can be reduced irsthi
theory to the speaker’s ontological commitmentssdy of a proposition that it is true means that th
propositional content it expresses fits to oneestéitthe world; to say that it is false means thdbes
not fit. There is no difference between the trutta @roposition and the recognition of its truth the
speaker, within the framework of this theory. listis the case, the problem is to know if this &eea
can act other than by recognizing the truth of waattatement expresses. There can be but one
judgment, according to Frege: either we recogrieettuth of a statement, and we express the layter
‘The door is closed’; either we do not recognizeitd we express its falsity indirectly by ‘The di®
not closed’. But what if the speaker does not kmdwether the door is closed?

Von Wright proposes a grammatical test tovknid a statement is a ‘proposition’ “A
grammatically well-formed sentence expresses agsitipn if, and only if, the sentence which we get
by prefixing to it the phrase ‘it is true that'atso well-formed” [29, p. 6°]For example, ‘It is true that
the door is closed’ is well-formed and, therefdhes sentence ‘The door is closed’ is a proposition;
the other hand, that ‘It is true that close thertde an ill-formed sentence entails that ‘Cloges t
door!” is not a proposition. Von Wright's analysises not just corroborate the theory of speech acts
anticipated by Aristotle and established by Seatlayill also justify the existence of propositions
which are neither true nor false, such as normadrepositions like ‘The length of the standard mete
in Paris is 1 metet’or metaphysical propositions like ‘To be is to frceived’. A proposition can
therefore be neither true nor false while belongmthe class of assertive acts. We will examinthén
following the consequences of this result on sdvussaes of logic, all scrutinized by Walki.

4. Pragmatic Bivalence

Wolenski [34] presents PB as the conjunction of two togfiaal propositions. The first is a

metalogical version of PEM:
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(1) Every sentence is either true or false.
The second is a metalogical version of PC:
(2) No sentence is both true and false.

The combination of (1) and (2) relates to four ferof metalogical judgments, either affirmative or
negative. By taking up the idea of von Wright [2Bg. prefixing arbitrary sentencgsby a truth
operator T, we thus obtain four types of judgmefisfor ‘It is true thatp’ and Fp for ‘It is false that

p’, which are affirmative judgments; plfor ‘It is not true that p’ and ~~for ‘It is not false thap’,
which are negative judgments. As usual, iiske [34] then proposes a logical hexagon, (S2), to
represent the logical relationships between thesejiidgments. The advantage of this hexagon is tha
it relativizes PB by depicting it as a non-tautobad) vertex (see below).

The top vertex of (S2) expresses the affirmatiaisé (1) of PB, while its contradictory at the
bottom vertex symbolizes the negation of (1). Cqaseatly, anyone who subscribes to PB cannot think
in terms of this hexagon without accepting two aitons incompatible with bivalence: on the one
hand, the possibility for a sentence not to be without being false (- does not entail 5 and not
to be false without being true (pEloes not entail {); on the other hand, there is the possibilitydor
sentence to be neither true nor falseg-&~Fp). At the same time, (S2) does not include the cdise
‘true contradictory’ sentences, dialetheias of form Tp 0 Fp. This sentence is incompatible with (S2),
since T and B are contrary to it (~({@ O Fp) holds in (S2)). However, just as what Waski calls
‘neutralities’ [34, p. 103] is possible in (S2) aoonsists in rejecting the affirmative clause of, BB
opponent of PB must be able to accept the podyilafi ‘dialetheias’ and to reject (2) into a non-
bivalent logic. Although Wolgski doubts the intuitive meaning of dialetheiasdgiming that “I did
not find any natural matrix semantics for paracstesit logic” [34, p. 12], it is nevertheless pobsito
justify their existence, in particular by proceeagliwith what von Wright [29] describes as a shift of
meaning in the concept of truth.

Referring to the example of drizzle as a ‘transitamne’ between rainy and dry weather, von
Wright explains that this situation can be logigalhalyzed in two distinct ways: either as a sitrat
where it is neither totally the case that it ramos totally the case that it does not rain, insafsdrops
of water still fall from the sky; either as a sitioa where it is still raining and already the céss not
raining anymore, insofar as simple drops of waterstill rain and already a situation of no raimisT
means that one and the same situation can be eoegidither as a case of neutrality or as a case of
dialetheia, but not by virtue of the same intergtieth of what ‘the case’ is or truth:

It should be observed that a conceptual shift loas taken place in the notion of truth. It is
not the same sense of ‘true’ in which we say thateither raining nor not-raining and say
that it is both raining and not-raining in the zarfetransition. We could call the former a
strict sense of ‘true’ and the latter a liberahaore laxsense of trutf29, p. 13]°
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(S2)
TpC Fp

Tp % Fp

P ‘\ / -Fp

~TpU~Fp

The difference between the two interpretationshaf toncept of truth appears clearly in the below
diagram by Von Wright [29], [30], where the ‘gap@nd ‘glutty’ propositions do not correspond to the
same ‘logical zone’ and are expressed respecthweby strict operator T and a liberal operator T

P ~Tp O~Fp Tp

Tp

. P
T

Wolenski’s hexagon (S2) is therefore only a fragmennoh-bivalent logical systems, and we must
take into account the two interpretations of theaapt of truth in order to establish a set of estiga
relationships between all possible judgments dhtand falsehood.

For this purpose, we propose in the following aorstruction of PB in the form of four
independent clauses. Indeed, (1) and (2) aboveamplex formulas including two atomic sentences.
(1) can be divided into two conditional sub-sen&naer clauses implying an affirmative consequent:

(1.2) If pis not false, thep is true.
(1.2) If pis not true, them is false.

Similarly, (2) can be divided into two clauses igiph a negative condition:

(2.1) If pis true, therp is not false.
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(2.2) If pis false, therm is not true.

These four clauses are of a metalogical order,hgy fire no material conditionals; rather, they
represent procedural constraints imposed on affivmgudgments, such that it is not allowed to gssi

a certain algebraic value to a sentence withoectigjg another at the same time. The general fdrm o
PB is a clause like

If pis X, thenp is notY

and can be interpreted asmapping that is, a homomorphism between a domain of walmed a
counter-domain:
XY

whereX andY denote arbitrary truth-values within a given domai

An important question is: can a rational agent stbs to one or the other of these clauses
without admitting the others, so that each of tiveould be considered logically independent of ad th
others? A reconstruction of PB was recently progaseSchang [25], where this last principle is
represented as the combination of four statemesriadqrs [A]p, meaning ‘It is the case thgtor ‘It is
true thatp’. Assertion corresponds to the assertive speechyawhich the agent accepts the truttppf
in accordance with our pragmatic interpretatiorthaf concept of truth. This operator is also able to
translate the two distinct meanings of the conoéptuth expressed by von Wright, while preserving
the idea accepted since Frege according to whiaimaig the falsehood of a sentence is affirming th
truth of its sentential negation,

Fp = T-p

In addition, we will see that these two ‘truth-ogiers’ are only two particular cases within a gaher
logic of acts of acceptance and rejecfiddn the basis of theartial statement operator [APB can be
reconstructed as a set of four types of operajgpsieal to truth-values and translating the fouusks
(1.1) — (2.2) as follows:

(1.3) [Alp:T~F
(L4) [ApFeT
(11) [Adp:T»F
(1.2) [Ap:F T

These operators are ‘partial’, because they tramsfunly some of (but not all) values of the initial
domain: ifp is X, thenp is notY; but if p is not X in the initial state of the domain of was, then
nothing happens, i.e. no transformation occurdiénfinal state of the counter-domaifthe ‘positive’
valuesT andF denote acts of acceptance (of truth and falseh@sdppposed to the ‘negative’ values
which denote acts of rejection (of truth or falsetip The independence of negative values is exgdain
by our pragmatic interpretation of truth-values damd the primacy of acts of judgment over the
assignments of these truth-values, which are orjyessions of propositional attitudes towards a
primary truth-value: the True. Von Wright explaihss point as follows:

How many truth-values are there? Shall we say theeetwo: truth, and falsehood? Or
count the gaps and overlaps too as truth-valuesaythere are four in all? As will be seen
later, we shall make use of a 4-valued matrix. 8iate all four values are definable in
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terms oftruth andnegation it would also be possible to say that basicdibré is onlyone
‘truth-value’, viz. true [29, p. 314).

Moreover, ‘classical’ logic seems ‘simpler’ tharufevalued systems insofar as it makes uses of only
two truth-values. But from our pragmatic point géw, it is less simple because it imposes more
constraints on the acts of acceptance and rejeclibe Bivalentist equates the ‘false’ with any
statement that is not true, so that rejecting il tof a statement is sufficient to accept itsifglfrom
his point of view. However, this condition is nahposed on a speaker whose rationality does not
include the operator [A

As a matter of fact, there is a set 8F'Dossible acceptance operators within a domaim of
truth-values, knowing that this domain of values @&rease from™= mto 2" elements. Wolenski
[34] pointed out that any domain of values inclgdin < 2 truth-values is trivial and unable to satisfy
the properties of the Tarskian consequence opeiratthe present case, let us consider the paaticul

domain of values in which the = 4 truth-values are the trie the non-truer, the falseF, and the
non-falseF. The Z — 1 = 15 acceptance operators available in thisailo are the following, where the
productl] consists in adding a variable number of restnnion judgments.

[Ad]p: T = F
[AJp: F T
[As]p: TwF
[Adp:F T

[Aslp = ([Ad] O [A)p: T = E OF T
[Aelp= (A O [Aa)p: T » FOT > F
[Adp= (A O[A)p: T > FOF =T
[Aelp= (A O [As)p: F»TOT = F
[Adp=([Aa] O [Ad)p: F»TUOF =T
[Alp=(As] O [Ad)p: T>FOF T

[Aulp=(A]O[A]O[A)p: T FOFTOT »F

[Adp = ([Ad] U [AZ] D[A4])p:T'—>EDE'—’TDE'—>T

[Aup=(A2 O[A] O[A)p: F>TOT»FOF T
[Aislp=(A] O[A) O[A)p: T»FOFTOT»FOF =T

Von Wright's strong truth-operator T corresponds to the acceptanceatpe[Ag]: it consists in
judging as true every sentence that is not hetskfalnd as false every sentence that is not hedd tr

Tp=[Adp: T»FOT—F

The operator T thus obeys two of the four clausdé2Byi.e. (1.1) and (2.1). Theveaktruth-operator T
corresponds to another acceptance operatey, [A

Tp=[Ap: F»TOF T
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according to which any sentence that is held fesee sentence that is not held true and any semtenc
that is not held false is a sentence that is held. tHence the operator T@oes not obey the same
clauses of PB as the operator T, since the latesfies (1.2) and (2.2).

By interpreting pragmatically the four truth-valuas an ordered pair of accepted or rejected
truth-values, we thus obtain the translati@s 11, T = 10,F = 01 andN = 00 and the following
matrices characterizing the ‘strict’ and ‘liberalith-operators.

P | Tp|Tp
11]10| 01
10/ 10| 10
01/ 01| 01
00/ 01] 10

The third metalogical operator of von Wright [29,3®ie operator of falsity ; does not occur among
the operators [f] — [A1s] because its definition is essentially based typa of information irreducible
to the terms of PB. It essentially involves sen&gntegation knowing that p = T~p. It is this
negation that we will explain now, in pragmatiomsrofrejection

The second type of judgmeniz. rejection [N], is independent of the acceptancerator [A].
The latter imposes restrictions on ‘positive’ judgnts of type p is X', while rejection corresponds to
the class of operators imposing constraints ondtieg judgments of typep'is notX'. The general
form of the rejection operator is

if pisX, thenpis notX,
that is, a mapping of the general form
XX

which differs from the operator of acceptance by ithentity of the transformed truth-value of the
counter-domain. Due to the procedural similarity the mappings of affirmative and negative
judgments, there may be as many separate rejegtierators [N as there are acceptance operators
[Ai]. To build such a rejection operator, it suffidesrepeat the pattern of JJAwhilst replacing the
truth-value of the counter-domathby the valuex of the initial domain.

‘Classical’ negation can be understood in two didtways, in this general logic of acceptance
and rejection: either as that which turns the intie false and the false into true, by virtue of, RBher
as that which turns the true into non-true andf#iige into non-false, independently of PB. Suszko’s
acceptance of the clause FAonsists in treating the two explanations aboveeasivalent: the
algebraic ‘not-true’ is a logical ‘false’, in thersse that it expressesat-designatedrialueVAD which
excludes the algebraic ‘true’; the algebraic ‘ralsé’ is a logical ‘true’, in the sense that it eegses a
designatedralue D which includes the algebraic ‘true’. Ndvette are rejection operatorsi[MWhich do
not turn any designated value into an undesignedfae, and vice versa. Taking the example of the
particular operator [},

[No]p: F - F

this case of partial rejection is such that théiahiruth of p is left unchanged in the final counter-
domain. It is therefore necessary to specify tmmitdation of ‘classical’ negation [ as any rejection
operator which turns the designated or ‘true’ imbm-designated or ‘non-true’, i,e.,
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{INclp|[Nc]pO T~ T}

However, ‘classical’ negation behaves traditionatya ‘total’ function that transfornadl the truth-
values of the initial domain; thus, its pragmatcicterpart will be here the rejection operatofs[N

INislp=(A] O[A] O[As] O[A)p: T»TOF-»FOTH»TOF e F

We will call this total negation a ‘Boolean’ negati rather than a ‘classic’ negation which desigsat
the use of negation within the classical logic sgst

Falsehood, on the other hand, is a ‘mixed’ opertitat associates the operator of truth with a
sentential negation. The negation in question endperator of falsehoodo= T~p is what von Wright
[29] describes amternal or strong negation (‘it is the case tmaif), as opposed texternalor weak
negation or weak (‘it imot the case that’). Internal negation is not prefik@the operator T, but to the
sentential conterd. Now the rejection operators jjNire not able to explain this negation, becausg th
are only constructors of external negations. Stroagation stands ‘halfway’ between the operators of
acceptance and rejection, insofar as it consisé&@epting the negation of a given statement ahehno
simply denying this statement. To represent stroegation, we need a third type of mapping which is
neither acceptance nor rejection but a ‘fusion’tled two basic judgment operators. This hybrid
operator can characterize internal negation (orrtéaian’) as follows:

[ANip: X > ¥ =X > ¥

which can be paraphrased as ‘rejected acceptanceicoepted rejectioh’ and whose traditional
characterization corresponds to total negation kN

[ANig]p:T» FOF»TOT—»FOF T

It is therefore possible to translate the operafofalsity F = T as the expression of a particular
affirmation

Fp = T[NAs]p = [Aq][NA 15| p,
and weak truth p = ~Fp as the total rejection of the falsity-operator:
T'p =~ = [Nag][A o] [NA 18] p.

We obtain the characteristic matrices of the opesafF and Ton the basis of their above pragmatic
reconstruction:

P | [NAs]p | [Ag][NA 15]p | [N1s][A o][NA 15]p
11 11 10 01
10 01 01 10
01 10 10 01
00 00 01 10

The set of operators of acceptance, rejection,taedusion of both constitutes a generalized Idgica
framework, AR[Oi],” which is a set of 4-valued systems composed ofuthel logical constants
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(conjunction, disjunction, conditional), pragmatperators [@Q = {[Ai][Ni]}, and in which the
sentential variables (atomic or molecular) are givpreceded by a judgment operatof].f® An
extension of this framework toa-valent systems corresponds to the universal lbdi@amework
AR0i}, but our reflection will be limited to the 4-vallidomain in the following.

It is already possible to reconstruct four type$ogfcal systems in ARoj;, by means of the two
operators of acceptance and rejection and the ggations, external (or ‘Boolean’) and internal (or
‘Morganian’). These three categories are distingedsby their attitude towards two main metalogical
properties:completenesgsemantics), andonsistency The first property corresponds to the clauses
(2.1) — (2.2) of PB, and the second property cpoeds to the clauses (1.1) — (1.2).

The first category of logical systems translataibleterms of [A] is the set of ‘classical’
systems, that is to say, complete and consistémy €orrespond to von Wright's logic CL. Although
there is traditionally only one single logic systealled ‘classical’, there can exist more than ibrvee
interpret the term ‘classical’ in the sense of &uszbivaluation: every sentence receives only one
truth-value,T or F, in accordance with the second clause 6®”Frege’s Axiom. The class of ‘classical’
systems thus corresponds to the class of logicdkesys whose characteristic operatorg pkoduce
only two algebraic values: those which von Wrigalis ‘unilateral’ truth, 10 (true and non-false)dan
‘unilateral’ falsehood, 01 (false and not-true)h#is been shown in Schang [25] that severgl4re
consistency-and-completeness-forming operatorsah they form ‘unilateral’ judgments: A [A7],
[Ag] and [Ag], whose common feature is to satisfy one and amig clause of consistency and
completeness: (1.1) — (2.1), (1.1) — (2.2), (1.2231), or (1.2) — (2.2). The matrices below shbwe t
‘classic’ behavior of rational agents subscribingohe or other of the bivalent restrictions ontrut
values:

P | [Aelp | [A7]lp | [As]p | [Adp
11| 10 10 01 01
10| 10 10 10 10
01| 01 01 01 01
00| 01 10 01 10

The second category of logical systems is the $etomplete and non-consistent systemg,
‘paraconsistent’. They correspond to von Wrightigit TL. Each of these systems satisfies one
completeness clause among (1) and (2), but norleeofwo consistency clauses (3) — (4). There are
again several ways of obtaining these condition&Ryo;, hence several paraconsistency-forming
operators of acceptance:JA[A4], [A1d], [A13], [A14], Whose common feature is to accept the ‘glutty’
or ‘overlapping’ algebraic valuB = 11.

P [ [As]p | [Agp | [Asdp | [A1z]p | [A1q]p
11| 11 11 11 11 01

10| 10 10 10 10 10
01| 01 01 01 01 01
00| 01 10 11 11 11

The third category of logical systems is the clagsnon-complete and consistent systems, or
‘paracomplete’. They correspond to von Wright' Tagic. Each of these systems satisfies one
consistency clause among (2.1) and (2.2), but wbtlee two completeness clauses (1.1) — (1.2). The
paracompleteness-forming operators of acceptancet dae ‘bilateral’ incomplete valudl = 00 and

are the following: [A], [Az2], [As), [A14], [A12]-
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P [[Adp | [A2p | [As]p | [Au]p | [Ax]p
11| 10 01 00 00 00
10| 10 10 10 10 10
01| 01 01 01 01 01
00| 00 00 00 01 10

Finally, the fourth and final category of logicayssems is the class of non-complete and non-
consistent, or ‘paranormal’ systems. They corredpgorvon Wright's logic TL. Paradoxically, these
systems are not those which satisfy none but, erctimtraryall the four clauses (1) — (2) of PB. The
paranormality-forming operators of acceptance admaittwo ‘bilateral’ value® = 11 andN = 00 and
are reduced to one single case;:]A

[p] | [Ass]p
11

00
10| 10
01| 01
00| 11

The above results partially agree with the clasaifon proposed by Waiski for the different attitudes
towards PB and Suszko’s Thesis, which consistsiiididg any language L into two and only two
classes of logical values. While we recognize thate are different ways of disagreeing with PB, we
are not following the same classification critedacording to Woléski, the disagreement relates to
‘Bivalentists’, the ‘Pseudobivalentists’, and thentibivalentists’

The Bivalentists accept PB (the conjunction ofgdl (2)), but they differ as far the matter
concerns whether the bi-division of L suffices faronstructing logic. The
Pseudobivalentists accept either the metalogedlum non datur(1) or the metalogical
principle of non-contradiction (2) and take thedhiision as sufficient or not. The
Antibivalentists accept neutralities or dialethetasl deny that the bi-division adequately
displays the basis of logjig4, p. 105.].

From a constructive point of view, Wdkki's Bivalentists 'are these ‘Semi-bivalentistshevform
classical, that is to say, complete and consisfadgments; the Pseudo-bivalentists are these
‘Semibivalentists’ who form paracomplete or paraistent judgments; and the Antibivalentists are,
paradoxically, the ‘complete’ Bivalentists who forparanormal judgments by admitting the four
clauses of PB. This paradoxical result comes from'@nstructive’ or analytical reading of bivalenc
while Wolenski [34] does not divide the clauses of consisteaicgt completeness into two logically
independent clauses. In all cases, the bi-divisiequired by Suszko’s Thesis never allows the
construction of non-classical logic systems inftaenework of ARoj.

Our pragmatic reconstruction of logical systehopes to draw attention to four main points.

Firstly, ‘classical’ logic and ‘bivalent logic’ arenot synonymous expressions from our
pragmatic point of view. The so-called ‘classicagic was constructed by ‘semi-bivalent’ systems,
insofar as it does not satisfy the four PB clausésonly two of them (as opposed to the ‘paranormal
logic which, paradoxically, obeys all clauses of IRB is not a ‘classical’ system).

Secondly, there are strictly speaking no ‘clas§icglaracomplete’ or ‘paraconsistent’
negations. It is shown above and in Schang [25]iths not the two sentential negations (Boolead a
Morganian) but the acceptance operators that disish the classes of theorems from classical and
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non-classical systems. In other words, the ‘cladsagent is not distinguished from other agentdisy
particular use of negation but, rather, by higwde towards PB or what justifies a statementuhtr

Thirdly, the illocutionary interpretation of judgmis provides a certain answer to the sea-battle
problem, presented in the Chapter IX of Aristotl®g Interpretationeand studied a length by
tukasiewicz. To the question of how to validate BEM

PEM Every sentengeor its negation pris true,
without admitting the completeness clause of PB,
(2) Every sentence is true or false,

tukasiewicz [11] proposed a trivalent logic whiahects PB but is not able to validate PEM. Is ityon
possible, and on what condition in A&? The problem essentially relates to the relatietwben
PEM and its metalogical version &rtium non daturexpressed by the completeness clause (2) of PB.
If the two principles are independent from eachentit means that it is possible to admit one witho
the other. In accordance with the formation rulegudgments and the translation of PEM and (2) in
ARyoi:

(PEM) [Ail(p U [N1s]p)
(2) [Ailp O[A{][N1s]p

validating PEM without BV consists in finding artenpretation of [A such that the following thesis is
not valid:

(PEM) - (2)

The operator [A] seems to satisfy this request but requires aensidn of Lukasiewicz’s analysis to
four-valuedness. By replacing sentential variablgth their algebraic referents, we thus obtain the
following proof of invalidity:

[Agl11 O[N1s]11 - [Ag]11 [Ag]00
[Ag](11 000) - [Ag]11 O[Ag]00
[Ag]10 - 01001
10 - 01
01

One can doubt, however, the philosophical insightéss of this result, beyond its purely formal
meaning. Even if the paranormal situation of thdeesdent may agree with the thesis of
indeterminism, the problem, on the other hand, eotecthe meaning of sentential negation: the proof
above rests essentially on the uséBobleannegation, while the notion of falsehood includadhe
consequent PB results inMorganiannegation which modifies the above result of theopr Another
solution would be to admit bivalence by replacihg hotion of falsehood with that of non-truth, Batt

the consequent PB would be replaced by. RBw such a formal ‘solution’ does not account toe
sea-battle problem by reducing it to a trivial vens It therefore remains an open issue, especially
regarding the meaning to be given to sententiahti@g Morganian, in ‘it is the case that the satilb
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will take place or willnot take place’; or Boolean, in ‘it is the case the haval battle will take place
or it isnotthe case that the sea-battle will take pldte’.

Fourthly, the functional definition of the acceptarnoperators provides a new and completely
abstract explanation of the conceptlohlity. Thus, for any operator [Aand all algebraic values:

If [Ai]p: X = Y, thend([Ailp): X = Y

Each of the paracomplete systems ofs@Ris the dual of a paraconsistent system, by thiigitien.
Duality can also be interpreted by the relatioswabalternation within the framework of the theory of
oppositions. It is this notion of duality that wellviind again later on, with respect to the retetship
between logic and scepticism. It will allow to sethere are other types of propositional attitutiesn
acceptance and rejection or if attitudes such seragn, assumption and doubt are all reduciblida¢o
two pragmatic operators of AR.

5. Logics of Attitudes

If we accept the hypothesis that logic concerngé¢taionship between judgments, this implies that
speaker commits to the truth of certain sentenoelsadso accepts the logical consequences of this
commitment. However, the preceding discussion galbnce and the plurality of agents represented in
ARy assumes that these agents are multiple and thainhp one rationality is assumed by all of
these. Woléski draws a relevant formal lesson from this plityalvith respect to the redundant theory
of truth and Tarski’s T-scheme: “considerationsulibe T-scheme show that T-equivalences are no
longer logical tautologies beyond propositionatoais’[35, p. 9.}*

Von Wright confirms that the T-scheme does not hwltversally

The equivalence @ - p is well-known from discussions about the naturetrath. Its
meaning is often expressed by saying that the phias true that’, when prefixed to a
sentence, is otious or redundant. But this is tmlg if one accepts the laws (of excluded
middle and of contradiction) of classical logic.diassical logic the phrase ‘it is true that’ is
indeed redundant — and this explains why the togerator is not needed in the object
language of the classical calculus. But the classialculus is only a special, limiting, case
of truth-logic. In other truth-logics the truth-apéor is not redundant [30, p. 325].

This is the obviously the case in the pluralistfeavork ARy, Where the T-scheme may not be valid
for some interpretations of [A™

Faced with a plurality of formal truth-logida/oleaski [30], [32] investigates the philosophical
forms of this plurality. He goes on discussingtrteditional expressions in the history of philospph
especially through the distinction established byt8s Empiricus between three patterns of ratipnali
dogmatism, academicism, and scepticism. The |sgems to pose an enigma for logic: Does the
sceptical agent recognize some particular casesutbf, and what logic can he admit if he does not
recognize any? Let us take a look at Wisl@’'s analysis, in order to see what we can leaomfit
within our pragmatic logic.

This analysis is based on three componentsreaise definition of the three philosophical
schools mentioned above, based on the commenta@riny Naess; a representation of the logical
relationships between the three types of agentshwigsult from it, in the form of a hexagon of lcaji
oppositions; an explanation of sceptical logicthe form of a dual consequence’.

The main trouble comes from the meaning ofatiginal text by Sextus Empiricus. According
to the author, each of the three philosophical slshetudied expresses a distimgtistemic attitude:
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dogmatism asserts that the truth is discoveralsll@micism asserts that the truth is not discolerab
the sceptic does not assert that the truth is desable, nor does he assert that the truth is not
discoverable (he seeks the truth without findingett). We recognize here another triad of contgarie
between the three positions, and Wigk offers an exhaustive representation of epistattitudes in

the form of a logical hexagon (DIAS,isomorphic to the preceding hexagon of truth-val(&2).

The inclusive positione] corresponds to general dogmatism and comes infonas: @)
‘optimistic’ dogmatism, expressed by academicisifi) {pessimistic’ dogmatism, expressed by
academicism. The exclusive positias) Corresponds to scepticism, which rejects thetpesassertion
of the dogmatist and the negative assertion oataelemician.

(DIA)

¢

The first logical difficulty comes from the meanitgbe given to the indefinite expressitine truth’:
is it any truth whatsoever, or some truth in patac? According to Woleski, only an existential
interpretation of this definite article can restte precise meaning of the academic position:

The dogmatist’s view cannot be rendered by

(20) I assert thatverytruth is discoverable,

because it would make it impossible to state ac&ianand scepticism adequately to
their actual historical form. Assume that (20)aken as proper for dogmatism. By our
(DIA), the academician would say

(21) I assert thahot everytruth is discoverable (= | assert that at least tvath is not
discoverable). However, this statement is too wieakhe academician, because it does
not exclude that possibly some truths are discderdNow the sceptic, under (20) and
(21), must say

(22) 1 do not assert that every truth is discovieraimd | do not assert that at least one
truth is not discoverable.

This statement is too weak for the sceptic, becausscribes to him the view that
abstaining from assertions is restricted only fected propositions belonging to a given
K. Since the sceptical doubt is universal in (RR) drops an essential part of scepticism.
This, the dogmatist should be moderate in his epigt ambitions in order to be fair to

his competitors [33, p. 189.]
88



This passage seems to express a half-truth. A&kilés right to say that the sceptic does not aicaap
particular truth according to the principle of istenia, so that there is no sufficient reason te@p
or its negation p. On the other hand, does the expression of seg¢ptititude impose one and only one
possible expression for the attitudes of dogmatsm scepticism? Wolski seems to think so. His
reasoning proceeds as follows: if the dogmatiseréssthatevery truth is discoverable, then the
academician asserts the contrary. What is thisamt According to Naess, this is the assertiohdha
least one truth is not discoverable; however, déisisertion does not correctly restore the attitddae
academician; therefore, the dogmatist’s attitudstrbe reformulated accordingly and expressed as the
assertion thaait leastone truth is discoverable. This reasoning is basedhe idea that the triad of
oppositenpoe of the hexagon (DIA) must be exhaustive ; thabisay, it must exhaust the entire space
logic so thatn I O is atautology

At the same time, it is possible to express a greaimber of epistemic attitudes than those
expressed in (DIA). As shown by Englebretsen [ humber depends on the logical structure of the
expressions and the different ways of denying thH&taxting from

(a) | assert that every truth is discoverable,

it is possible to express seven other differengioents on the basis of (a), modifying its logicain
by the introduction of negations:

(b) | assert that every truthn®t discoverable.

(© | assert thatot every truth is discoverable, i.e. | assert tha¢ast one truth is not discoverable.

(d) | donot assert that every truth is discoverable.

(e) | assert thanot every truth isnot discoverable, i.e. | assert that at least oneh tigt
discoverable.

0] | do not assert thamot every truth is discoverable.

(9) | donot assert that every truth mot discoverable.

(h) | donot assert thamot every truth isnotdiscoverable.

The logical space of the formulas (a) — (h) is mmmplex than the hexagon (DIA), due to the logical
structure of its formulas. In (DIA), negation issnécted and applies only to the sentential content
‘every truth is discoverable’. The assertimedality of judgment is never denied, while it is in (d), (
(9), and (h). By analogy with the alethic modattief necessity and possibility, assertion can be
considered as a ‘strong’ epistemic modality aneh@gation means the ‘weak’ modalityafpposition
Scepticism denies positive and negative assertibasgfore the attitude of doubt that characteriziss
equivalent to an epistemic contingency. On thedasithis interpretation, we can reformulate the
negative judgments as follows:

(d) I suppose thahot every truth is discoverable, i.e. | suppose thateast one truth isot
discoverable;

(f) I suppose that every truth is discoverable;

(g9) | suppose thahot every truth isnot discoverable, i.e. | suppose that at least onth tisi
discoverable;

(h) I suppose that every truthrist discoverable.

The diagram (DIA) is therefore a mere fragmenthid set of expressions in whict)(= (e), ) = (b),
and () = ~(e)l~(b) = (h)I(g).
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The problem to follow is twofold: What are the logi relationships between the formulas of
the extended structure (a) — (h)? Did Naess andWkil provide a correct interpretation of the three
epistemic attitudes of dogmatism, academicism,saegticism?

To study the set of logical relationships, we maglgze the logical space of these formulas as a
set of logically independent subsets, that is toreatually exclusive and exhaustive. The resul is
Partition Semanticssimilar to the analysis, of FA proposed in sattloand inspired by various works
[4], [9], [24]. The hexagon (DIA) is limited to agical spac&; composed of three subspaces:

(e) | (h)(9) | (b)
I |

while the logical space&, of the expressions (a) — (h) includes six subspaueich are further
partitions of the three previous ones:

@) | (e)(f)(g)l (€)(c) | (A)(h) | (C)(h)(g)l (b)

Each expression can then be interpreted as a setooipied or unoccupied positions into a finite
logical space. Let be the function applying to each expression aesponding value 1 or O in the
different logical subspaces. This results in tHeWang valuations for all of the formulas (a) -)(hto

be identified by a characteristiitstring (an ordered sequence of Boolean bits):

s(a) = 100000(b) = 000001 5(c) = 0010115(d) = 011111 6(e) = 1110000(f) = 110100,5(g) =
1111106(h) = 110111.

The above valuations above make it possible tondefine set of logical relations by means of a
Boolean calculus, composed of three bitstring dpesa complementation, union, and intersection.
Thus, for any bitstring(x) = (61(x), ...,on(X)) of lengthn characterizing any abstract object

Complementation
G(Y) = <01(X), ’Gn(x)>

Union
o(X) U o(y) =(01(¥) T 61(Y), ..., 0n(X) T 0,(y)), with 1 > 0 andb;(xX) U o;(y) = maxe;(x),0;(y))-

Intersection
o(X) N o(y) =(61(X) N 01(Y), ..., 0 (X) N 0,(Y)), with 1 > 0 ands;(X) n o;(y) = min(o;(X),0;(Y))-

Following the calculus of oppositions presentedSzphang [24], complementation turns out to be a
contradictionforming operator. If the definitions of Naess aNdlenski are correct, then:

+ (‘positive’) dogmatism is (e), and its charactecigtitstring inX; is o(e) = 111000
« academism (or ‘positive dogmatism’) is (b), and dtsaracteristic bitstring ik, is o(b) =
000001
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« scepticism is a negation of the two dogmatismsgefbee it corresponds to the formula
(e) O Ob) = (h) O (g) and its characteristic bitstringag¢h [0 g) = (111000) n (000001) =
(000111)n (111210) = 000110

The set (a) — (h) can be partially representechenhtexagon (DIA), knowing that it constitutes the
fragment of a total set of 2 256 possible formulas withixp.

(DIA)
111001

11100( % 000001

y

000110

The Boolean calculus also confirms the idea thghdiism, academicism and scepticism constitute an
exhaustive triangle of contrariesontraries because their characteristic bitstrings neverlagewith
each other irx; and their intersection is therefore emmtyzl g O =, i.e.

(a) n o(B) N o(¢p) = 1110000 000001 000110 = 000000

exhaustivebecause the union of the three epistemic atttodeupies the entire logical space such that
a OB O =T, that is to say,

o(a) O o(B) O o(p) = 1110001 000001J 000110 =111111.
This partition semantics can also be applied to Wight's truth-logics, based on the logical spage

which characterizes the operators T, F, ahdXj turns out to be isomorphic ®;, sinceXs also
includes three subspaces mentioned in von WrighB8[H:

Tp | ~TpO~T~p | T

The result is a set of formulas characterized bstimgs of lengtm = 3, namely:
o(Tp) = 100; 6(~Tp 0 ~T~p) = 010; 6(Fp) = o(T~p) = 001;6(T'p) = o(~T~p) = o(T~p) = 110;

o(T’~p) = o(~Tp) = o(Tp) = 011;6(Tp O Fp) = 1000 001 = 1015(~Tp O ~Fp) = 011n 110 = 010.
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These valuations match with the logical hexagor) (82Volenski [34]:
(S2)
101

y

010

We can see here that the two non-unilateral tratbes,B andN, confirm what von Wright [29], [30]
explained by his metaphor of the transition zonevben dry and rainy weather: these are only two
ways of expressing the same situation, that isypthe same logical subspacen

The proof runs as follows, which consists in shaninat the two metalogical operators B and
N have the same characteristic bitstring:

Bp=Tp&T'~p, sos(Bp) =110n 011 =010
Np =~Tp & ~T9, sos(Np) =011n 110 =010

B and N say ‘the same thing’, whether in elementary teohsstrong’ or ‘liberal’ truth. The same
conclusion can be reached within AdR, in order to explain the distinction between tberfcategories
of logical systems according to their interpretatad truth: ‘paracomplete’ systems give to it adsig’
epistemianeaning, such that fr means p is provable’ or ‘there is conclusive evidenceandr ofp’;
‘paraconsistent’ systems give a ‘liberal’ (or ‘w8akpistemicmeaning, such that il means p is
justifiable’ or ‘there is reason to believe timfis the case)’; ‘normal’ (or ‘classical’) systemgwe an
ontological meaning, such that fil means ‘it is a fact (or it is) that;'® the paranormal system,
finally, combines the three previous interpretasi@md this explains why no theorem is valid in this
system endowed with an absolutely free interpratati

We come back now to the problem of Naess and kigkle
What should be the correct interpretation of théstemic attitude of scepticism? This seems to
correspond to the operator JAof ARyo, due to its two characteristic partial functionise first

mapping,T ~ F, means that the existence of an argumenp fostifies the rejection of its falsehood:;

the second mapping, » T, means that the existence of an argument agajostifies the rejection of
its truth. The values of the domain therefore repné available data, while the values of the caunte
domain express the judgment of the speaker detethtig such data.
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Does the sceptical agent reject the truthabfleast one proposition, or the truth of any
proposition in the sense of a set of sentences ké&Aski explained that only the first interpretation
does justice to the contrary attitudes of dogmatsith academism; now we have shown that there are
other opposite epistemic attitudes among the egmes (a) — (h), so that nothing seems to prevent t
dogmatist from being even more radically opposeth&academician: the first is likely to assert tha
all truth is knowable, while the second would couné to think that no truth is knowable. The logical
question is to ask whether or not dogmatists, anade and sceptics should constitute a set of
epistemic attitudes not only exclusive but alsaj above all,exhaustive Although Gddel's second
theorem of incompleteness gives a strong argumerfavor of the interpretation of Naess and
Wolenski, it is possible to conceive of other more asleadical epistemic attitudes in relation to the
three models cited and according to the meanimidpatied to the concept of ‘truth’.

Examples of seemingly ‘irrational’ epistemattitudes come in particular from Indian
philosophies, including the Jain theory afekantavadaor saptabhangi(theory of non-unilateral
judgments) and theatuskoti(Tetralemma) of the Madhyamika or ‘Middle Way’ sch'® These two
philosophical stances seem illogical because oemséo accept (the truth of) any sentence while the
second would reject them all. In other words, then hgent asserts everything and embodies the
expression (a), while the Madhyamaka agent assetting. We will limit the examination of this
possibility to situations of first-order belieféat is to say, to epistemic attitudes bearing sardential
content and not on themselve (sebeliefs). Is it possible to believe the truth ofyasentence? This
seems to be the case of the sceptic, insofar apfeses the ‘positive’ dogmatist who asserts atlea
one sentence. But since he also opposes the aaaerhy not asserting the falsity of any statement,
the sceptic therefore recognizes the truth ortfalsi no statement. This amounts to a ‘non-bivalent’
situation in which rejecting the truth of a seneerdoes not imply asserting its negation, i.e. its
falsehood. Although the logic AR; seems to account for this sort of agent, its atarstic matrix
does not, however, prevent the assertion of a seat@henever its assigned truth-value is ‘unildtera

One can conceive the logic of the sceptic in twgsvaither as an attitude ofaterial rejection,
or as an attitude dbrmal rejection. In the first case, the assertion oftence is formally possible but
materially impossible, due to the epistemic in&pilbf the sceptical agent to meet the criteria of
justification for any sentence. This amounts to mmgka sort of truncation of the matrices
characterizing the sceptic in Afss), such as

p_ | [Asg]p
11| 00

In the second case, it is formally impossible teesisanything due to the ontological inability afya
sentence to meet the criteria of ‘strict’ truth.ilamounts to performing a truncation in the fiefd
truth-values, such that the domain of the scepimimates all assertion and is compelled to intetrpr
any sentence in v= N = {00}. This situation is mathematically possibed von Wright mentions it
as one of the 16 ‘truth-logics’ resulting from thewerset of the four initial valugs= 11,T = 10,F =
01,N=00:

There are in all 16 different ways in which one &aarmit” or “forbid” some or several

of the four cases. (We then include the two extremses of permitting all four and
permitting none of them respectively.)
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These 16 selections answer to 16 different ‘trotjids’. Not all of them seem to be of
interest and some of them, moreover, would seebetmlentical with one another. [30,
p. 314.]

The logic of the sceptic would correspond in thésspective to all of the sentences interpretedhén t
univalent domain §i} = {00}, indicated in red here below:

Card(W) =1 ={1}
Card(W) = 4 = {{11},{10},{01}, {00} }
Card(\,) = 6 = {{11,10},{11,01},{11,00},{10,01},{10,00},{01,00}}
Card(Vs) = 4 = {{11,10,01},{11,10,00},{11,01,00},{10,01,09
Card(Vy) =1 ={11,10,01,00}

As for the epistemic attitude of the Jain, it woglatrespond to the opposite case (indicated in, blue
here above) in which any statement is interpretgdinvthe one-valued domairB} = {11}. A reason

for admitting this formal truncation is given byetimternalistaccount of epistemic attitudes in Schang
[19], [20], [22]: from his own point of view, theaih attributes to the concept of truth a ‘convemid
meaning $amvrti-satya such that the slightest reason to accept a semtensufficient, while the
Madhyamakas give to it an ‘absolute’ meanipgramartha-satyasuch that no reason is sufficient to
accept any sentence. At the same timeesternalistaccount of epistemic attitudes modifies the
domain of valuation of the Jain: his seven corefgi® judgments consists in an exhaustive
combination of the different kinds of epistemicitattes which may be either normal and
paraconsistent/(p)[}{10,01,00}) or normal and paraconsistew(pj{11,10,01}) %

Admitting such explanations seems essential togmiethe slightest case of assertion. The
distinction between assertion and supposition mastiglly account for these radical epistemic
attitudes: the Jain does not assert anything apploses everything, so that his attitude is mora &ki
eclecticismthan optimistic dogmatism; the sceptic assertiingtand rejects everything, because his
criterion of justification is so high that the thubf any sentence must be absolute. The logicatetf
these attitudes is such that they cancel out tissipdity of a bivalent domain, insofar as any trut
value isdesignatedor the Jain andot designatedor the Madhyamaka. The bi-partition required for
the construction of a consequence relation is thexreimpossible, and any sentence then turns out
logically true or logically false. It is not thisath of one-valuedness that Wiad&i followed to analyze
the logic of the skeptic, to whom he attributesoa-assertive and logical behavior at the same time.
One way to maintain bivalence consists in replativegnotion of traditional consequenCa by a dual
consequenceCn, in which consequence does not preserve the tfitentences but their falsity.
Wolenski explains the logic of the skeptic in that walgrough the attitude of rejection. For all
statements A,B:

If Ais rejected an@ is a dual consequenceAfthenB is also rejected

Let us note that, from a sceptical point of viewge tconcept of dual consequence should be
synonymous with preservingntruth rather than falsehood (since the falsitypoéntails the truth of
~p). Now the sceptical agent of Naess and \isite seems to admit classical consequence and still
make sense of the attitude of assertion aftek\dlenski explains this point as follows:

Many things concerning rejection can be of courgeressed by Cn and negation. For
example, the modus tollens leads from asse/hing B and assertingB- (= rejectingB)
to rejectingA (= asserting nof). However, the sceptic does not like the assedame,
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even in a mixed form, and certainly he prefersifémguage that does not commit him to
assertion [33, p. 192.]

Does the sceptic take dual consequence to be aattereative language game that is equivalentdo th
assertive language game? It all depends on thepistation of his attitude towards sentence and the
concept of truth. Woleski’'s version is more ‘liberal’ than ours, if radicscepticism means that one
can attribute the truth to no sentence whatsoé\es.dual consequence Wagki deals with is distinct
from the traditional relation of consequence, bathbare still interchangeable and the discourshef
sceptic does still make sense for a bivalent agewnin our point of view, it is the epistemic attieu

[Oj] of the sceptic which is dual with that of the Bientists: rejection is untranslatable in terms of
assertion, and the discourse of the sceptic iether a language game which is meaningless for a
bivalent agent. No wonder if it is so difficult t@nstruct a logic characterizing this agent, amdséiime
holds for other agents such as Parmenides, HegBladley.

6. Partition Semantics for Non-Suszkian Logics

It is not difficult to construct a logic which doest subscribe to the ‘weak’ version of PB, whea th
truth-values are algebraic values reducible to KaisZlogical values. On the other hand, it is much
more difficult, if not impossible, to conceive ofayic that does not subscribe to the ‘strong’ erof
(PB'): can we say of a statement that it is designatetinot-designated at the same time? If a sentence
is true-and-false, it is designated and is not sigated. If a sentence is neither-true-nor-falses,
undesignated and is not designated. The varioymmegss to Suszko’s Thesis, (including [6,12]) did
not refute this thesis but advanced alternativelkiof consequence (preserving either falsehood, or
untruth). Suszko’s Thesis is therefore not ‘falseinconsistent, but it may appear less ‘insightiil
the sense that the Tarskian consequence wouldensutficient to understand rationality in a more
comprehensive way.

A criterion of insightfulness was proposed by Wskd, in order to show the philosophical
irrelevance of the coherence theory of truth: “thaory is obscure, it should be abandoned; ibésd
not satisfy its promises, it should also be abardpand the same holds for a redundant theoryeSinc
the coherence theory is obscure or it does nosfgabwn promises or it is redundant, it should be
abandoned” [32, p. 44.] Just as there can be dameegoretations of logical principles and epistem
attitudes, Woléski also distinguishes two versions of the cohezdheory of truth: a ‘mixed’ version,
which maintains the existence of a true senteaceespondingo a fact while defining the truth of the
other sentence in terms of coherencepfifs held true in the sense of truth as corresponoégthen the
disjunction p 00 q' is true because it is coherent with respecp)toa ‘pure’ or ‘Bradleyian’ version
(with reference to its author, Francis Herbert Beg)] by virtue of which it is a whole system of
sentences S which is held true and not the serdesfc®. Woléski criticizes this ‘pure’ definition of
truth as coherence because of one main logicattefe failure of ‘down’-compactness, which is the
converse of the compactness property and which ¥hkielefines [32, p. 46] as follows:

If X is a set of propositions and every finite sebsf X is true, then X is also trdé.

The failure of compactness in the coherence thebtguth is due to the holistic nature of the cqrtce
of truth: it is impossible to assign truth to simglentences of S, hence their truth is only ‘plartighe
sense that they depend on the truth of all theratbetences of the system. Now this holism is more
radical than the holism of the so-called Duhem-@uimesis, in that it responds to a ‘pure’ theory of
coherence whose meaning is of an ontological ordantrast, Quine’s truth as coherence is a holis
of justification, rather than dealing with truth iastands. Wolgski quotes Russell, the main opponent

95



of Bradley’s idealism, according to which his dowtr seems obscure because it obeys some ‘logic
other than ours™

The alternative is therefore the following, whicancbe depicted as Waleki's test of
insightfulness: either a philosophical theory makesse, and there is a logic able to explain this
theory; or there is no such logic, and the theargsdnot make sense (it must be rejected, accoglingl
It is notably this absence of clearly defined ‘l@gihich seems to justify the rejection of philobogal
theories such as Bradley's therory truth as pureemnce, but also Parmenides’ theory of being,
Hegel's self-difference (inspired by Heraclitus), even Heidegger's ‘nihilating nothing’. Two
questions arise here: Is the ‘other logic’ Ruse&ls talking about compatible with the standards of
modern logic, based on the fundamental relatioooosequence? Can a theory be called ‘logical’ if it
does not embed or include any consequence relatimRave seen so far that the plurality of modern
logical systems rests on a certain version of kgmuralism, according to which the difference
between systems lies in their disagreement aboat ivhing the case’ meaf.

Now the ‘logics’ of Bradley, Hegel or Heidegger set® require more than a pluralism of truth,
that is to say, a variety of definitions of the cept of truth within one and the same set-theaktic
model (including the ‘strict’ and ‘liberal’ truthef von Wright [29], [30]; they seem to require a
pluralism ofontology i.e. the construction of models alternative te thainstream model theory and
incompatible with the formal semantics exposed faus

Partition Semantics, previously exposed in the ya@malof epistemic attitudes, may be able to
make sense of some of the “linguistic extravagdiiédsr which it seems impossible to construct
one’s own logic. Two case studies could appeamlaasscof ‘non-Suszkian logics’, i.e. rational sysem
in which the ‘strong’ principle of bivalence PBoes not hold: dialectical synthesis, and nothéisgn

Several attempts to formalize the Hegeliaadediic have been proposed so far, including da
Costa [3] and Rogowski [15f.In the former’s system ¢ C,, the concept of antinomy is rendered by
a ‘partial’ negation whose applications validate iovalidate PC depending on the structural
complexity of the sentences. In the latter’s lagfichange, a domain of four truth-values is propase
make sense of the process of ‘becoming’. This donmaludes ‘unilateral’ truth-values (the true:ist
the case only’, and the false: ‘it is not the casly’) and ‘non-unilateral’ (sub-truth: ‘it begirte be the
case that’, and sub-falsehood: ‘it ceases to bec#ise that’), in order to explain the transitioanfr
being to non-being. This logical system partititims concepts of being and non-being, in the sdrate t
it attempts to explain this continuous transiticetween these two states in terms of discrete truth-
values. This passage takes place througychcal negation, which turns a ‘unilateral’ state intman-
unilateral' state (and vice versa)However, this system does not seem able to exfiairprocess of
dialectical synthesis: it always rests on the cpte®f being and non-being, since it explains the
concept of becoming as a transition between thvesdasic states or being and not-being.

A more ‘radical’ explanation would be to proceedtle reverse sense, without presupposing
states and conceiving of being and not being asdbalts of the process of dialectical synthesis. A
model of this kind is proposed in Schang [25], acting both Bradley's truth as coherence and
Hegel's sursumptive’ negatidfi.Let x be a kind of initial object, the Absolute, whickhausts the
logical space and whose truth-value is the True ynthesis process is to be interpreted as awtobje
constructor, by successively partitioning this ialitexhaustive object into different parts thatl sti
‘participate’ in it, in the light of the followingiered’ model:
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Leve 1

thesis T X
antithesis T
synthesis TT X1 Xy
]
Level 2
thesis TT Xy | X5
antithesis  TT !
synthesis  TTTT X, | X, | X3
| |
Level 3
thesis TTTT X1 | X, | X3
antithesis  TTTT ! !
synthesis TTTTTTTT X4 | X | X3 | X

The initial being,T, is preserved hereby in each of subsequent statbsesults from a construction

process identical to that of algebraic truth-valube ‘false’ F = T corresponds to the antithesis of
Level 1; the ‘true-and-false’ corresponds to thetkgsis of Level 1, etc. This model is able to akpl
the meaning of metalogical negation applied tchtealues: it corresponds to the Hegelian negation o
Aufhebungwhich is often translated as a process of ‘chapdly-preserving’ and which escapes the
principle of subsumption with judgments like ‘SH5and ‘S is not P’. Hegelian negation thus produce
a change by the antithesis, but it guarantees rsepvation of the original truth through synthe#is
this model gives meaning to Hegel’'s dialectic,nbws above all that the Hegelian negation is not an
operator applied into a preestablished domaintatter, a truth-valueonstructor® The same can be
said of Heidegger’s ‘nihilation’, which is also natsentential negation but consists in rejecting a
characteristic property of any object. In partitisemantics, this means that the ‘nihilation’ preces
Works3lci)ke a subtraction operator that decreasesitmber of bits 1 of the bitstring characterizargy
object:

Partition Semantics may also make sense afiiBy’s holistic theory of truth as coherence, as
well as to the concept of ‘nothingness’. If the Hian dialectic explains the construction of an
ontologyas an increasing partition of one initial uniqued®al into an increasing number of particular
objects, the final set of constructed objects spoads to Bradley’s ‘total’ or ‘absolute’ truth @&nd
each singular object constitutes a ‘partial’ tratiseparable from T. Conversely, the concept of
‘nothingness’ designates that which is nothing aadnot be predicated of any object. The length of
the bitstringo(x) characterizing any objeat makes it possible to distinguish the conceptsetdtive
and absolute nothingness: ‘relative nothingnessinisobject’x such that(x) = [0 with a number of
finite bits, while absolute nothingness would be chareretd by a logically equivalent bitstring but
whose number of bits isfinite. This distinction is also found in the construetprocess of algebraic
truth-values: in a bivalent value domaih=22" = 2, the ‘false’ corresponds to the empty setnoin-
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true’; in a domain of quadrivalent value€s=22 = 4, it is the ‘neither-true-nor-false’ which cesponds

to the empty set while the ‘false’ constitutes aper element of the domaithAs for nothingness, it
would be this particular ‘object’ which would remagmpty in all the successive domains of truth-
values.

Admitting these explanations of truth as eehee, of Hegelian dialectics and of nothingness
supposes a certain dose of tolerance with regartheonotion of ‘logic’: with no relation of
consequence, as a process of constructing forntalogies. In a sense, the relation of consequence
rests on a process of discrimination (of the ‘trimgic and the ‘false’ logic) whose philosophical
counterpart is the distinction between being anatim@ing. However, being and non-being presuppose
an ontology of stable objects, i.e. substancesSuszkian’ logic presupposes in this sense theenast
of substances which cannot be reduced to accidprapkrties, while a ‘non-Suszkian’ logic does not
presuppose any ontology and consists in buildinglet® rather than ordering their preexisting
components. Bradley’s model is not a set of padicobjects, but an absolute object that includes
everything. Hegel’'s model includes an absolute a@bjeom which all the particular objects are dedv
and which patrticipate in it. In contrast to thepecal models, the logical model is an Aristotelian
model: an ‘object’ isoméhing, that is to say, a finite set of propertiemg of which are predicated or
not and whose characteristic bitstrings are thustimdjuished from any other object in the
comprehensive model. We find in this explanatioreaho of Aristotle’s hylemorphism, according to
which every object is a unique combination of faand matter. This ‘mixed’ ontology contrasts with
that of Parmenides and Heraclitus: in the firsgergthing is a form at rest, so everything ‘is’ wbas
‘becoming’ does not make sense; in the secondythreg is a matter in movement, so everything
‘becomes’ whereas ‘being’ does not make séhsEhese ontologies therefore involve ‘radical’
judgments of total acceptance and total rejectaond Partition Semantics is likely to explain what
Russell called a logic ‘different from ours’. Them® non-Suszkian logics, so to speak.

7. Conclusion: What are Truth-Values?

We did not pretend to address here all of Profe¥golenski’'s philosophical and logical writings.
However, we hope to have followed the general neetifaanalysis which he has developed so far and
which could be depicted dsrmal philosophy the use of formal tools for the understanding and
elucidation of philosophical problems.

The problems discussed here were some logiatiples of rationality: PC, PEM, and PB,;
epistemic attitudes: dogmatism, academism, andtistp; philosophical theories, such as Bradley’s
‘pure’ theory of truth as coherence and the conoéptothingness. A fundamental tool was used to
organize our thoughts on these issues, namehh-#aitie, and our main questioning concerned the
nature of such an abstract ‘object’. Is there aifipeanswer to this question? Any relativisticpease
risks reducing logical analysis to an exerciseonfrfal hermeneutics in which the theorist alwaysdas
reason to argue and is never at fault. Howeves,ithmore or less the answer that we bring to titk e
of this article, through a certain interpretatidntmth-values: these are thmeferentsof sentences, in
accordance with the first clause Féf FA; but these referents are not reduced to‘lwgical’ objects
which are the true and the false, as opposed tee¢bend clause RAANy response to this subject
requires an explanation of the nature of this alsbject.

From the perspective of proof theory, a truth-vatugans the result of a proof and it does not
make sense to assign it to a sentence out of dwegs of proof. From the perspective of model heor
a truth-value means that a corresponding sentegloads to a model and it makes no sense to assign a
truth-value to it outside any model. The intendefitrent is therefore either a proof or a membership
relation. But it can be even more, if this ‘abstrabject’ of truth-value may receive other formal
interpretations.
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The partition semantics introduced hereby has gitednto widen the field of interpretations in
this way, beyond Suszko’s ‘logical’ values and tsikavicz’s ‘algebraic’ values. For Suszko and for
tukasiewicz, truth-values designate classes ofesers that are accepted or rejected and chara&cteriz
the relation of consequence within a formal logic;Bradley’s theory of truth as coherence or the
Hegelian dialectic as we have reconstructed tharth-values designate classes of objects thatrdiffe
from the usual sentences of formal logic: it is tb&ality of sentences, in Bradley’s theory; itns
sentence in particular but, rather, an individugkot, in Hegel’s dialectic. Our conclusion is thia¢
limits of formal logic depend essentially on theamimg attributed to the concept of ‘referent’.rlith-
values are considered by Frege as proper name® pieper names are very general and can vary in
their cardinality: there are only two exclusive aating to Frege and Suszko, while there can be more
according to tukasiewicz ; there is an infinite rhem of inclusive ones, for Hegelian idealists (all
included in the ‘Great Fact’, or the Absolute), {ehihere is none for the Madhyamaka Buddhists.
Suszko’s situations are also ‘truth values’ in tleevn right, once we no longer consider a truthseal
as a class intended solely to characterize a oeladf consequence. There may be even further
interpretations of logical values, such that sélate to the consequence but go beyond the sedecdr
assertive judgments. An exhaustive treatment ofitvalues thus belongs to a broader formal thebry o
values, but the present paper wanted to sticketdaimer oned?

The idea of many-valued logics is no ‘madhesgrything depends on the function assigned to
the formal language that makes uses of these. tew@z’s ‘madness’ may pe pushed even further, as
we did hereby. Only Woteski’'s test of insightfulness can convince us thaheory is not crazy, as
long as it is possible to construct an approprfatenal theory of meaning. A formal semantics of
partitions purports to fulfill this requirementsjuas the semantics of possible worlds did it wapect
to the language of modalities.
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Notes

1. The two versions of bivalence are symbolizedaR8 PB, in [34]. We will focus here on PB, i.e. the
formulation of bivalence in terms of algebraic \esdu

2. Woleaski points that, regarding the psychological intetation of PC, “Lukasiewicz argues that the
last understanding is irrelevant for logic, becaitise an empirical fact that people assert conttady
assertions.” [37, p. 4]. One might ask two questiabout tukasiewicz’'s intriguing position with
respect to this psychological interpretation of FXGst, why does he believe that the existence of
contradictory beliefs does not constitute a souedson for invalidating PC? Second, are these
contradictory beliefs held in the context of trasmsmt or opaque discourse, that is, known or
unbeknownst to doxastic agents? Our pragmaticgre@tion of PC will take the existence of such
contradictory beliefs seriously.

3. ‘Sentence’ and ‘proposition’ will be used inteangeably throughout the paper, as they only occur
with an indicative use.

4. One could blame this example for confusing whatistinct in the theory of speech acts, namely:
assertive acts, and declarative acts. The examipkemtence on the metric convention could be
considered an example of the latter, and thus ghatthis sentence is not a proposition. On theroth
hand, metaphysical propositions are indeed assesttts and thus confirm Von Wright's view that
there are propositions neither true nor false.

5. The author also sees in this liberal interpretabbtruth a possible explanation for the process of
‘synthesis’ in Hegel's dialectic: “I suppose thaisi something like that which happened in Dialesiti
Synthesis”. We will return to this process latee pwith respect to truth as coherence and nothsgne
6. ‘Affirmation’ and ‘negation’ are understood heas illocutionary forces, and not as the locutignar
properties of a sentence or propositional contf€atavoid confusion between these locutionary and
illocutionary aspects, we will only use the phraseseptance’ and ‘rejection’ in the rest of thisce.

7. One can also interpret these operators as amsctivhich transform only certain truth-values and
leave the others unchanged:;JAurns the true into non-false and leaves theefalachanged, for
example. They are not ‘total functions’, in the segiven by Béziau in the Appendix of [35].

8. This means that constitutes the primary element in the constractibtruth value domains: frofh

comes the falseE = T, then the other non-bivalent truth-values. We wéflurn to this process of
constructing truth values in order to try to shéght on Woléski's reflections on Bradleyian
coherence and nothingness.

9. “Having a logic with 2 logical values, we can always construct its extensvith 2! logical
values” [34, p. 106].

10. The proof of identity of [AN and [NA] is provided [25], as well as the redundant operédrm of
the classical assertion: [AA= [NNj]. It is also explained that the ‘fusion’ of operet is distinct from
their composition or iteration, of form [A][}] (acceptance of rejection) and [N][@)rejection of
acceptance).

11. The details of this general framework will ragpear in this paper, due to its irrelevance fer th
present issue; for a presentation of the syntaxsantantics of ARoj, see [25]. The logical constants
may be explained as follows in AR, for any arbitrary sentencegy such that their algebraic values
are the ordered paixgp) = (X1,Y1) andv(q) = (X2,Y2). Thus:v(p 0 q) = (max(X, Y1), min(Xz,Y2)); v(p
0a) = (min(Xy, Y1), max(X,Y2)); V(p - a) = (Max(%,Y2), min(Xy,Y?2)).

12. This formation rule means, recalling von Wrigltuth-logics, that there are no ‘mixed’ formulas
like [Oi]p —» p in AR4oij. Indeed, the expression @’ indicates a judgment wheregs indicates a
mere sentential content. The formula JJ©® - p’ is therefore an ill-formed sentence meaning
something like ‘If the door is closed, then closthg door’). It is because of this syntactic rdiettthe
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logical octagon proposed by [34] does not make es@m#ARycij, since Woléski admits formulas of
types T — p by admitting of sentential variables among itslsi@med formulas.
13. Von Wright also states the equivalence of (PEdhd (2), due to the Morganian behavior of
negation in his paraconsistent truth-logick &nd T'L: “Is T(p O [p) a tautology? The answer is No.
It can, in fact, easily be shown thatpT( [p) is logically equivalent in (TL) with p O TCD, i.e. with
the Principle of Bivalence.” [29, p. 10.]
14. The T-scheme is of formpT~ p, which lies behind the ‘deflationary’ theory otith and means
that the semantic predicate of truth T adds notkingstantial to the meaning of the sentential cdante
p.
15. Note that the translation opT- p in ARy is not [A]p — p, which is an ill-formed formula.
Rather, it must be rephrased ag|f[Ai]p — p), ‘| accept that everything | accept has an evigefor
it’. It turns out that this last formula does naidhwith, e.g., [A]. Indeed,
[Agl([Ae]11 -~ 11) = [Ag](00 - 11) = [A¢]O1 = 01.
16.a = ‘| assert that the truth is discoverabl@g’s ‘I assert that the truth is not discoverable’;l do
not assert that the truth is not discoverahles ‘I do not assert that the truth is discoverghie= ‘|
assert that the truth is discoverable or | askeattthe truth is not discoverable';= ‘I do not assert that
the truth is discoverable and | do not assertttiatruth is not discoverable’.
17. This abstract object may be a sentence, boitzat®ncept, or even an individual object. See[8]g.
about the latter case.
18. Any confusion between the ‘antirealist’ (epmie) and ‘realist’ (ontological) interpretations of
risks producing paradoxical consequences if theseadmitted within a single, single logical system,
which is not the case in ARy. This seems to be the case with the ‘Fitch Parasdose conclusion
Is that a proposition is true if and only if itkeown:p — Kp. The ‘paradoxical’ consequence of this
antirealistic definition of truth is indeed baseda‘mixed’ formal language in whighand Kp belong
to the same object language. A syntactic criticdrthis paradox is formulated in [18], which consis
in refusing any mixed formula as an ill-formed fada (thus blocking the initial premise of the
paradox). Another anti-paradox strategy appearshén ‘bi-facial’ system [38], which consists in
distinguishing two kinds of truth-values: ontologi¢T andF), and epistemic (1 and 0).
19. See in particular [16], for a many-valued as@lypfsaptabhangin either 7- or 15-valued domains.
See also [19,20] for a 1-valued (therefore non-Eas} analysis ofaptabhangandcatuskoti
20. The cardinal of the Jaisevenjudgments follows from combinations of differenpistemic
attitudes, which vyields this general model of @matar models or valuations:
{{10},{01}{11},{10,01},{10,11},{01,11},{10,01,11}, in the normal and paraconsistent syste@ J
{{10},{01},{00},{10,01},{10,00},{01,00},{10,01,00}, in the normal and paracomplete system. J
Thus, there are®2= 8 — 1 possible ways of judging any sentence feoset of 3 single epistemic
attitudes, the Bforbidden case being the one in which sentenaeseither accepted nor rejected. We
take this last situation to match with the Madhykaatance of ‘silence’ or peace of mind, such that
the sentence is entertained without being judgetllaSee [14] about this interpretation which seem
to corresponds to the above special casgedf von Wright's 16 truth-logics.
21. For example, let A pand B =p [1q.
22. Woleski specifies that the principle of compactnesgdlly holds in the Bradley system, since
this principle is expressed in the form of a candial whose antecedent is false. It is only theveose
of this principle that is awkward.
23. “The coherence-theory is generally advocatefif the connection with logic entirely different
from ours.” [32, p. 45.]
24. Thepluralism of the criteria for assigning truth is defendedpauticular in [1]; it is opposed to
Carnap’s logicatelativism where the disagreement does not come from thaingeaf truth but from
the meaning of logical constants (regardless af theth conditions).
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25. “Perhaps Heidegger's and Sartre’s linguistitraasancies, like ‘nihilation’ or ‘neantization’ wlel
illustrate various troubles with the (absolute) Nogness.” [36, p. 187.]

26. For a discussion of Rogowski’s logic of changee especially [28] and also [7], [17]. This logic
modifies the previous explanation given by von Wtif9], [30] about the drizzle, which he presented
as a case of rain and no rain and which becomebercase of ‘sub-falsehood’.

27. This cyclical negation cannot be translatedRao;, because it establishes between truth-values an
ordering relation which does not correspond to @frityre rejection operators {N

28. The concept of ‘sursumption’ was created bytfiau [8] to point out the idea that Hegel's being
overhangs (andhcludeg contradictory qualities, as opposed to the pplecof subsumption that rules
contradictory (an@éxclusivg judgments of form ‘S is P’ and ‘S is not P'.

29. This operator is compared to the successioratipeS of Peano’s arithmetic such ag)S(n + 1.

30. This operator may be viewed as a precedencatop® dual to S, such amnpen — 1.

31. The relativity of nothingness is evoked by Wsle with the example of the silent composition of
John Cage4'33. Wolenski poses the following question: “Let us assuns #very year Cage would
have written a piece of finite length, but alwaysimute longer than the present one. Would then the
structure of, sayf’33 be the same as that df33?” [36, p. 187]. Our answer is No: the two
compositions would have been different, due to diféeerence in lengthn in their characteristic
bitstrings.

32. The distinction between ‘nothing’, ‘somethiragid 'everything’ is explained in [23] as a diffecen
between their respective bitstrings: ‘somethingdame thing’ and ‘no thing is nothing’ hold, whereas
‘every thing is everything’ does not.

33. The constructive process of truth-values teat$ to various domains of valuation shows this
increasing process of relative bitstrings, whererg¥inite bitstring relates to a special kind abper
name: &Kripkeanproper name, which behaves as a uniquely idengfgxpression.

34. ‘Good’ and ‘wrong’ may also occur as the reféseof moral propositionsi.e. expressive speech-
acts by means of which Leo StrauS®ductio at Hitlerunis rendered as a moral version of Modus
Tollens. See Schang, F., “Moral Inferences” (draftyl “Political Oppositions” (talk to be deliverad
the next ¥ World Congress on the Square of Opposition, Lepgeptember 7-11, 2021).
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Abstract:

Reism or concretism are the labels for a positiontology and semantics that
is represented by various philosophers. As Kazimigjdukiewicz and Jan
Wolenski have shown, there are two dimensions with whicl abstract
expression of reism can be made concrete: Theamitall dimension of reism
says that only things exist; the semantic dimengbrreism says that all
concepts must be reduced to concrete terms in ¢odee meaningful. In this
paper we argue for the following two theses: (1jhAr Schopenhauer has
advocated a reistic philosophy of language whigfs g¢hat all concepts must
ultimately be based on concrete intuition in ortiebe meaningful. (2) In his
semantics, Schopenhauer developed a theory of Wiggrams that can be
interpreted by modern means in order to concrdtizeabstract position of
reism. Thus we are not only enhancing Jan W&Keés list of well-known
reists, but we are also adding a diagrammatic deémento concretism,
represented by Schopenhauer.

Keywords: Semantics, Reism, Reification, Abstraction, Plupdsy of
Language, Logic Diagrams, Jan Witdki.

1. Introduction

In his article published ifhe Stanford Encyclopedia of Philosopdty the doctrine of reism, Jan
Wolenski remarks that it has been anticipated by a nunobephilosophers from antiquity to
modernity. The list includes names such as Thonwsbels, Gottfried Wilhelm Leibniz, and Franz
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Brentano, and eventually points at the Polish gbider Tadeusz Kotafski as the one who has
presented the “most developed version” of the doef31]. Kazimierz Ajdukiewicz and Waiski
concretize the abstract concept of reism by digdinnto an ontological (only things are real) and
a semantic dimension (concepts must be reducddngs) [1], [31]. In this paper, we argue (1) that
the above-given list should be enhanced by the rafrttee philosopher Arthur Schopenhauer, who
was born in Danzig in 1788 and died in FrankfurtlB60, and who is for example known for
having influenced Wittgenstein [18], [7]. Moreovere argue not only for reism in Schopenhauer’s
work but also for the fact (2) that in Héerlin Lecturesof the 1820s Schopenhauer has developed a
diagrammatic method of concretization.

Argument (1) may seem quite unexpected, given doethat Schopenhauer is known as a
thinker who holds that the whole world is a martdésn of a metaphysical and irrational will [30,
p. 34] — a stance that seems to be nowhere lessatheomplete odds with e.g. Kotabki's reist
program. To prove this not fully adequate, we wdkcus in Section 2 on Schopenhauer’s
methodology and offer a reading of it which givea®isg foundations for viewing him as a reist. In
this section, we will also reconstruct the most amti@nt elements of his philosophy of language of
his Berlin Lecturesas, until recently, they have not drawn much étteramong scholars.

Argument (2) is addressed in Section 3. Here, wedegvelop a diagrammatic method that
Schopenhauer used in Bgrlin Lecturedo illustrate his reistic doctrines. For Schopeargralogic
diagrams are the best way to concretise what camally only be expressed in abstract terms.
Therefore, we argue that they can show anotherglyadiagrammatic dimension to understand the
position of reism or concretism. These diagramshalveady been introduced in [8] as a general
tool for philosophy of language. Although the demmatic method has certain similarities to the
diagram systems of e.g. Leonhard Euler, ImmanueitKand even John Venn, we use the term
“Schopenhauer diagrams” to avoid further clarifyitige relationship to already known logic
diagrams.

2. Schopenhauer’s Reist Philosophy of Language

In this section, we will first give an introductida Schopenhauer’s philosophy of language (2.1),
then present his theory of concepts (2.2), andlfirague that Schopenhauer’s theory can be called
reistic (2.3). In this presentation (2.1 — 2.2) angumentation (2.3), we refer mainly to the wgsn
from Schopenhauer’s Berlin period (1818 — 1830) espkcially to hi8erlin Lectures

2.1. Introduction to Schopenhauer’s Philosophy of anguage
81 State of Research

Despite the claim of Jan Garewicz, the Polish tedos of, among otherg,he World as Will and
RepresentatioWWR that Arthur Schopenhauer’s philosophy “has foargtrong resonance in the
period of scientism and positivism” [10, p. 32]eterman philosopher’'s work on philosophy of
language and logic seems to remain almost unknowthé researchers currently concerned with
these topics. This might be somehow connected thighfact that it is in the manuscripts for his
Berlin Lectureq23], [24], written in the 1820s, that he dedicatés attention to these issues in the
most systematic and profound way. The lectures wat# recently only available in an edition
published over 100 years ago, during the endirg périod which might be considered the peak of
interest for his philosopRy[3, p. 13 f.]. However, it is not that Schopenhadees not work on
these topics in his other works. In fact, the tep€ language and concepts appear in his writings
throughout his career, starting from his dissestat(1813) until his final workParerga and
Paralipomena(1851), and seem to constitute an object of higaerring philosophical interest
which plays an important role for his philosophisgstem [6, pp. 11-12].
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82 Hierarchies of Language

In a recent paper, Matthias Kol3ler argued that Schapen’s theory of language cannot be simply
reduced to a nominalist, instrumental theory, inclwHanguage is treated as a tool for describing
empirical objects. However, Kofdler admits at thed eof his paper that “[n]evertheless
Schopenhauer talks about language as a tool [..d"aalls: “He [sc. Schopenhauer] does not reject
these aspects of language but places them interartinic order of different uses of language” [15,
p. 23]. Without further discussion on whether thetiumental theory of language is the core or just
one of several uses of language distinguished bgi@mhauer, it certainly is present in his analysis
of Ianr%guage and, significantly for our purposeyritvides a framework which seems to concur with
reisnt.

83 Language within Schopenhauer’s System

As the titles of his main workThe World as Will and Representation = WW4Rd the more
detailedBerlin LecturegThe Doctrine of the Essence of the World and then&iuSpirij suggest,
Schopenhauer assumes that there are only two Wwayswing the world that can be attributed to
humans — as representation and as will [25, p.,J29] p. 41]. Whereas the parts of his writings in
which he discusses the world as will can be, byoadeaking, interpreted as the presentation of his
metaphysics, the examination of the world as regmtagion contains elements of his epistemology
and methodology. Not surprisingly, Schopenhaudyath works quite early in the presentation of
his system already discusses the problem of larguagd specifically the possibilities of
application of concepts for the description of i@ and mental facts. This discussion can be
found in the rather short paragraph 9 of the fidtime of WWR(about 10 pages long) and is then
significantly enhanced in the notes for Schopenhaugerlin Lectures which encompass more
than 100 pages on language and logic.

84 |dealism and Empiricism

The starting point for the construction of Schoprer's system seems quite paradoxical. On the
one hand, he assumes the Kantian, idealistic vimatvthe “being of things is identical with their
cognition” [Das Seyn der Dinge ist identisch miteim Erkanntwerden] [23, p. 113], which he
expresses in his claim that all the world is mepresentatior(i.e. the world that we perceive is not
the thing-in-itself). On the other hand, Schopemhagees the framework of the phenomenal world
with its a priori forms of cognition as somehow the natural way afvking the world and the only
possible foundation for any further philosophicatlanetaphysical investigations. He opposes any
possibility of deducing the truth about the wonldrh reason alone and instead makes the claim that
any metaphysics should be founded upon the immangmrience of the subject or even ,empirical
sources of knowledge” [23, p. 152], cf. also [14,363]. Thus, Schopenhauer simultaneously
assumes (1) the idealist stance that empiricaityeala creation of the subject’s cognition angl (2
the empiricist distinction of empirical sources dhd subject’s knowledge. This is possible because
he treats the empiricist dualism as the startingtgor the construction of a philosophical system,
which eventually is monist.

85 Ontological and Epistemological Interpretation

Consequently, the distinction of empirical soureesl the subject’'s knowledge should not be
interpreted ontologically, but epistemologicallgh®penhauer does not claim that what is empirical
is ultimately real. He only claims that we expecerthe subject-dependent phenomenal world as
having two dimensions, namely intuitive objects afdtract thoughts, and this is the outlook we
need to assume as the starting point for philosapheflection, as from it we get out data for the
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investigation of the world. We need to do so, eveme are philosophically aware of the idealistic
character of human cognition.

2.2. Schopenhauer’s Theory of Concepts
86 Two Classes of Phenomena

According to 85, philosophical reflection sets with considering the world as representation or a
collection of representations (phenomena). Thesmqnena can be grouped into two classes: (1)
intuitive and (2) abstract phenomena. The charaafténis classification is epistemological, as the
reason for it is provided by the different modescofnition of both classes of representation: (1)
intuitive representations are recognized by undadihg [Verstand] [23, p. 207], (2) the abstract
ones by reason [Vernunft] alone [23, p. 242]. “Alr representations”, Schopenhauer says, “can
generally be divided into visual [anschauliche] ameérely thought-like [gedachte], intuitive
[intuitiv] and abstract, into images and conceg®3, p. 118]. As can be seen, this distinction is
also equated with the differentiation of phenomena “images” (which can be “seen”) and —
significantly! — “concepts” (which can be “thougtit). Obviously, this must lead Schopenhauer to
provide a solution to such questions as the cheniatits of these two classes and their mutual
relation.

87 Intuitions

From a systematic point of view, intuitive phenomeme contrary to abstract phenomena. That is,
if something is an intuitive phenomenon, it canalsb be an abstract phenomenon wicd versa
From a historical point of view, Schopenhauer digstes from the theories of mere sensory data of
ancient and modern rationalists and empiricists ashapts a reduced Kantian theory of intuition:
the intuitive phenomena provide theaterial data which we can then express in terms of coscept
However, the reception of this data is conditiobgdheform of space, time, and causality [23, p.
57, cf. also pp. 146, 172], which allows us to eipee, i.e. to absorb sensory data. Therefore,
space, time, and causality age priori valid and they generate th@c et nuncof intuitive
representation. In the end, it seems plausiblessurae that Schopenhauer understands intuitive
representations as reality [Wirklichkeit] [23, @72 which is empirical and gives immediate, direct
knowledge. However, we need not forget that thislidm between intuitive and abstract
phenomena is only epistemological, but not ontaaki

88 Concepts

Concepts, the second class of phenomena, are tdvéagad as “a very peculiar class of
representations that exist alone in the human mamf which are tbto generedifferent” from
intuitive representations. This difference is exgeal above all in the fact that concepts can aaly b
thought of abstractly, but not observed in int@tikepresentation [23, p. 242]. In other words:
concepts are not empirical, intuitive objects, thay are experienced by the subject as something
like — using modern terminology — mental statesititarmore, Schopenhauer holds that “every
concept as a general, not a specific, represenths what is called a sphere, a circumference”,
which refers to a set of objects (both other coteag well as real objects, see below) that can be
conceived by it [23, p. 257].

89 Abstraction and Concept

How, then, are concepts made? Reason producesptsrmeabstracting from the many properties
of objects that are given in intuitive represemtatiThe concept therefore contains less than the
[intuitive, JL&MD] representation itself*; it is eated by “seeing away from what is unique in the
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individual [Wegsehn vom Besondern der Individud, pp. 249, 252]. Thus, a concept “does not
contain everything” that is given or contained t® intuitive basis. Because of this “innumerable
intuitive objects” can be thought of with the healpa concept [23, p. 249]. On the basis of an
intuitive representation an abstract, mental reitaoson of it can be formed, which is generally
applicable to many other objects in intuitive reyamatation. This generalization, which consists of
the liberation from théic et nunoof intuitive representation (87), thus enablesrttental grasp of
abstract, past and future facts, and these indamrbecome human motives for action.

810 Generality of Concepts

Schopenhauer points out that the general applibabil concepts for intuitive representation is not
the result of the process of development of corscepte. abstraction from one or many intuitive
objects or concepts (89) — but it is a result efrtsubstantial nature, i.e. their being merely takn
which is characterized by the absence of tempgatia determinations. It is, therefore, possible
and even necessary that a concept that has anseatdiracting from properties of one single
intuitively given object can potentially be applitnl several objects [23, p. 256]. Schopenhauer
says: “a concept is always general, even if therenly one thing that is thought by it; and only a
singular intuition that gives it content, is a probit” [23, p. 276 f.].

811 Classes of Concepts

Concepts, as abstract representations or thoughtsalso divided by Schopenhauer into two
general classesconcreta and abstracta Concreta are abstracted directly from intuitive
representations, arabstractaare formed by abstracting from some characteristicsoncepts or
genera [Gattungen]”. According to his examplesncretaare for instance red, dog, house, and
abstracta color, relation, friendship. He strongly reitesitthat this classification is, strictly
speaking, inauthentic or wrong, because all corscerd in fact abstract and only “what is intuitive
is actually concrete” [23, p. 252]. By using theaithentic) termgoncretumand abstractumhe
seems to refer to the original Latin meaning, whabstraherestands for “taking away” (cf.
Schopenhauer’s claim that all concepts are anteffes “seeing away” above) amdncrescerdor
“growing together”. The classes are only helpfuluimderstanding the relation of concepts to the
empirical world. Schopenhauer uses an allegomyeithink all concepts that we have as a building,
then the ground on which it stands will be intwtivepresentations, the ground floor will be
concretaand the higher floors will babstracta[23, p. 252]. The more general a concept is, the
further away it is from empirical reality.

812 Intuition-Concept-Hierarchy

By reference to the classes of concepts (811), (@sfitauer claims an epistemological hierarchy, in
which intuitive objects (87precedeconcepts as a source of knowledge. He also deniekiad of
innatism, i.e. the presence afpriori concepts in the human mind: “the whole abstractlfs of
reason [sc. the conceptual] is a secondary oneshampiesupposes intuition” [23, p. 235]. The
dependence of concepts on intuitive representaimm@sconsequence of how he understands the
process of the development of concepts, namelyrggrdduction, repetition, of the archetypal
intuitively given world” [23, p. 251]. Consequentlgoncepts become dependent on intuitive reality
as the source of information or data that they @on{89). This finds its expression for instance in
the following quotation: “the whole world of reflgan [...] rests on the intuitive one as its basis
cognition” [23, p. 252]. This is the reason, whyh8penhauer repeatedly refers to concepts as
“representations of representations” [23, p. 240¢ncepts have meaning only in relation to
empirical reality and the more abstract a concept is, the less mgpérias®

108



2.3. Schopenhauer’s Reism
8§13 Reism

This leads to the core claims of what could beecafbchopenhauer’'s reism. As has been shown,
within his basic idealistic outlook (84) he devedaptheory of two types of cognition, intuitive and
conceptual (886-8), and puts them into an epistegicdl hierarchy (812), as he holds that concepts
have meaning only in reference to empirical, imgitobjects, without which they would be
nothing. But even more crucially, he also holdg tencepts can be understood if and only if they
can be referred back to intuitions. For a conceyitet distinct and meaningful [deutlich], it must be
possible to fill it with empirical content. The “eonon explanation that the concept is distinct if it
can be broken down into its characteristics isamatugh” as long as these characteristics cannot be
traced back to intuitive representation, i.e. teacl perceptions [23, p. 254 f.]. Schopenhauer
concludes: “From our entire inquiry it has beconmwdent to everyone that the origin of all
knowledge and the foundation of all science lieglinect knowledge, that is, in intuition. Intuition

is the last source of all truth: all abstractioals,concepts, are only substitutes and only foirthe
other use, are they the substance of our knowldatige;truth is always an indirect one: the source
of all evidence is intuition. All knowledge, allittking, which does not eventually lead to some
kind of intuition, is empty” [23, p. 539].

814 Reist Language Criticism

For Schopenhauer, we only have meaningful [dewd]icdoncepts if we are able to replace our
abstract concepts with references to intuitiveingalt follows that we should be able to break
abstractadown toconcreta so thatconcretarefer [hindeuten] to empirical reality [cf. 23,2564 1.].
This idea is also one of the foundations, if n@ thost important one, of his repeated criticism of
Scholastics and German idealists, whose proporaetgriticized for their abundant use of very
abstract concepts [32]:

“Especially in philosophy, the danger is great thia¢ rises so high from abstraction to
abstraction that the way back to intuitive phenoangiickweg zum Anschaulichen] is
no longer to be found: then the whole knowledgenspty: one operates with mere
concepts that are no longer based on intuitiorh $mowledge is like paper-money that
cannot be cashed anywher§23, p. 539].

Obviously, Schopenhauer is criticizing here thernoper use of language, and the problem, which
he refers to, is that these philosophers’ termigpldoes not allow a clear reference to redlj4j.
Putting it into reist terms: such abstract termagyl cannot be reistically translated.

815 Kotarbinski’s Reism

The stance that abstract concepts need to be brdé&emn intoconcreta which again can be
referred back to intuition is strongly reminiscefitwhat Kotarbhski says about how a reist should
proceed: “for every declarative sentence (state)rteat includes abstract terms he tries to find an
equisignificant statement including no such termdds0, definitions of abstract and concrete terms
are provided: “By abstract terms | mean here als¢éhwhich are not concrete, and by concrete |
mean all, and only those, terms which are nameakiofis” [16, p. 441]. This formulation of the
reist program is almost identical to Schopenhaukxgyuage criticism and even uses similar
terminology. However, one important difference dtobe pointed out. In Kotarfiski's reism
concretaare “names of things”. This seems to at leastyonesthe ontological statement that the
world, which we conceptualize in language, consi$tthings. Indeed, soon after its presentation,
Kotarbinski's reism was subject to a debate regardinghierpretation as either (1) the ontological
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claim that “every object is a thing” or (2) a semarprogram which states that “every ‘name’
which is not a name of a thing” should be held “for apparent name” [1, p. 610 f.]. It was also
pointed out that ontological reism uses abstraohdefor expressing its main theses and in
consequence should be disqualified according towts rules [31]. After this criticism, Kotaniski
himself reformulated his reism into a semantic,nmative program to free language from abstract
names for clarity [31].

816 Between Ontological and Semantic Reism

If we try to consider Schopenhauer’s languageatsiti according to this classification, it seems
obvious that his postulate that we should be abledncretizeabstractaand eventually refer
concepts to intuitions can be interpreted as a sBeprogram (2) which formulates criteria how
language should be used. It can indeed be unddrsi®something quite similar to Kotaibki's
semantic reism, as a “program with the aim of thgio ‘de-hypostatization’ of humanities” [or
better: philosophy], with the goal of “turning ittd a discipline which uses clear, simpler and more
comprehensible language, even if less ‘sublimeétdeep’™ [33, p. 564 f.]. The question of whether
Schopenhauer could be interpreted also as an gtalaeist is more complex, given his steady
claim about the idealistic character of repres@ma84), which from a transcendental point of
view denies the existence of things.

817 Epistemological Concretism

For this reason, the distinction into ontologicaldasemantic reism seems not appropriate for
analyzing Schopenhauer’s reism. In fact, the ctymriablem is that whereas in Kotaifibki’s reism
concreta are “names of things”, Schopenhauer understands ths direct abstractions from
intuitions (813). It has to be underlined at th@np that the original term for intuition which he
uses isAnschauungenwhich in German strongly connotes visuality, as e seen in 86, where
abstract concepts are confronted with “images”sThaiterates the fact that his understanding of the
distinction into intuitions and concepts is epistdéogical and not ontological (85). Thus it seems
plausible to leave out the ontological question artdrpret his semantic reism from 816 as an
epistemological claim, which could be reformulagsdfollows: “in order to be meaningful, abstract
concepts have to be replaceable with concepts wtachbe intuited [or better in this context:
visualized ‘veranschaulichen’]”. Or more simplyn order to understand concepts we need to
visualize them This is strongly founded upon Schopenhauer’'s ragiec claim that all new
knowledge lies in intuition [Anschauung] (812) athét only intuition is truly concrete (811). For
this reason, the term “reism” seems inadequateitaisdmore suitable to refer to Schopenhauer’s
doctrine as “concretism” — a term, which Kot&dki used synonymously with “reism”. However, it
should be specified that this is an epistemologivail an ontological concretism [31].

8§18 Visualization

To sum up, with recourse to [23, pp. 251-256], aoalld define the following claims of
Schopenhauer’s epistemological concretism: (1) dhb objects in intuitive representation are
concrete; i.e. language is always abstract and thiolye terms are called (inauthentioncretathat
directly correspond to concrete intuition (811)) ([2concepts are to be meaningful [deutlich], it
must be possible to break them down into incre&gingncrete concepts (813), so that one can
finally use these concrete concepts to indicatéogpoint to intuitive phenomena [hindeuten]. It
follows that in order to make concepts comprehdasiwe need a theory of visualization. And
indeed, Schopenhauer makes several attempts talprsuch theories for different fields. He does
so e.g. for mathematics (cf. his visualizationhd Pythagorean theorem, which he holds to be self-
explanatory [23, p. 425]) or for poetry [24, p. B1Fut it is for the visualization of concepts and

110



language that he formulates the most developedythecthe Lectures This theory is based on
diagrams, which we discuss in Section 3.

3. Schopenhauer Diagrams and Epistemological Condrem

In this section, we will first give a short introction to Schopenhauer diagrams (3.1), then develop
a so-called level theory for concretism (3.2), vitik help of which we can finally provide a toot fo
Schopenhauer’s epistemological concretism, a semardgram in many ways similar to reism, in
form of intuitive diagrams (3.3).

3.1. An Introduction to Schopenhauer Diagrams
819 Schopenhauer’s Diagrams

In his Berlin Lectures Schopenhauer develops a diagrammatic logic tatbe used to illustrate
semantic positions, topics, and problems. The dragrthat Schopenhauer uses in his treatises on
language, logic, and eristic are for him the magpartant method of concretizing abstract topics
since diagrams intuitively illustrate what can ohlyformulated by using abstract concepts or signs
[19]. For Schopenhauer, even abstract algebraimonceptual theories of mathematics and logic
must always be based on an intuitive representaianhas an isomorphism to certain diagrams.
Although Schopenhauer explains the function ofdaljagrams in more detail [20], [5], he does not
give precise rules for their application in philpky of language. In what follows, we will sketch a
theory of Schopenhauer diagrams based on four praiciples (Cl, PIl, CE, PE) with which two
diagrams given in Schopenhauer’s philosophy of vage (Fig. 1 and 2) can be analyzed and
further developed.

- ‘

Fig. 1 (PL I, 258): Figur = figure; Dreieck Fig. 2 (PL I, 257): griin = green; bluthetrag
= triangle; Thier = animal; Vogel = bird = flower-bearing; Baum = tree

8§20 Complete Sphere Inclusion (ClI)

Let us assume that in Fig. 1 we see a diagramstiaws at least four terms in the form of four
spheres. Two concepts are assigned to a Cl, whishdwn as a subsa)f in the diagram:Cl-1)
The sphere that denotes the condejaingle is completely contained within the sphere of the
conceptfigure, i.e. triangle < figure. (Cl-2) The circle denoting the concepird is completely
contained within the sphere of the concepimal i.e. bird < animal. In Fig. 2 we find no
representation of CI.

8§21 Partial Sphere Inclusion (PI)

Pls exist when two spheres have an intersectiprn(the diagram. In Fig. 1 we find two PIs, since
the two larger spheres are partially containecha gsmaller spheresPi-1) The concepfigure is
partly contained in the spheretatingle, i.e.figure N triangle. (P1-2) The concepanimalis partly
contained in the sphere bird, i.e. animal n bird. In Fig. 2 we find even more PIRI(3) The
sphere that denotes the concéme partially intersects the sphere of the concegpgen i.e.

tree N green (PI-4) Also green and flower-bearing intersect, i.egreen N flower-bearing, and
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(PI1-5) flower-bearingandtree, i.e.flower-bearing n tree. Furthermore, we see in Fig. 2 that Pl can
also occur with more than two terms, sinB&§) the sphere of the conceggieen tree andflower-
bearingintersect in such a way that there is a commarsettion in the middle of the diagram, i.e.

greenn treen flower-bearing
§22 Complete Sphere Exclusion (CE)

However, Fig. 1 also shows that two of the fouresph with the other two remaining spheres show
neither Cls nor PlIsA): (CE-1) The sphere of the concefigure has neither Cls nor Pls with
animal i.e.figure A animal (CE-2) Due to (CE-1), (CI-1) and (CI-2) must also apglgttriangle
andbird possess neither Cls nor Pls, tgangle A bird. From (CE-1) and (CE-2) it is now also
evident that one of the larger spheres with onthefsmaller spheres has neither Cls nor Pls, i.e.
(CE-3) figure A bird and CE-4) animal A triangle.

§23 Partial Sphere Exclusion (PE)

PEs are present when Cls or Pls exist between omoeptual spheres, but a relative complement
(\) remains that is not described by Cls or Pls behnhese two concepts. In Fig. 1 we find two
PEs, namely where the inside of the larger spremot covered by the smaller one, ilRE(1)
figure \ triangle and PE-2) animal\ bird. Since Pls were found in Fig. 2, we see here tRiee
with two concepts: RE-3) The sphere denoting the concéyge does partially not intersect the
sphere of green i.e. tree\green (PE-4 Also green and flower-bearing i.e.
green\ flower-bearing and PE-5) flower-bearing and tree, i.e. flower-bearing\ tree If one
thinks about the unionu) of all three spheres and subtrad®-§) from it, the result is one of
several possible PE ratios including three concepms (PE-6) (greenu treeu flower-bearing \
(greenn treen flower-bearing.

8§24 Relations

Based on §82-5 we can already establish someawesator the individual principles: For Cl it is
transitive so that for all spheres y, z applies: IfCIxy andClyz, thenCIxz. For Pl it holds that it
is symmetricalso that for all spheres y holds:PIxy impliesPlyx. Also, CE issymmetri¢ so for
all spheres, y: CExy impliesCEyx. For PE it isnot symmetricbecause for some spheresy is
valid (e.g. PE-1, PE-2): RExy, then notPEyx.

§25 Regions and Frames

Concept development normally starts with only opleese of aconcretum(e.g.bird, animal), but

in relation to other spheres they form new oneg. E-1:animal\ bird). This is done by the four
principles that form different regions (R) insidedaoutside a given conceptual sphere. In order to
understand this concept formation more precisebyydver, it is first necessary to examine the
syntax of the respective diagrams with regard eéogpecific regions. These regions are marked in
the diagrams D1 and D2, which structurally correspto Figs. 1 and 2. To make it clear exactly
what belongs to a diagram and what does not, wee@aquare frame (F) around the diagram.
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D1 D2

8§26 Semantics of Regions

If we transfer the semantic meanings that we hameegl in Fig. 1 and 2 with the help of the four

principles to the syntactic designations of theiaeg in D1 and D2, we can make the following

assignments. For Fig. 1 and D1: (CI-1) = {R1}; ®I= {R3}; (PI-1) = {R2}; (PI-2) = {R4}; (PE-

1) = {R2}; (PE-2) = {R4}. For Fig. 2 and D2 it appk: (PI-3) = {R1, R2}; (PI-4) = {R1, R3}; (PI-

5) = {R1, R4}; (PI-6) = {R1}; (PE-3) = {R4, R5}; (B-4) = {R6, R2}; (PE-5) = {R3, R6}; {R5} in

D1 must also be present, otherwise (CE-1) and (Céosld not be displayed. But if we assume

{R5} in D1, we must also consider {R8} in D2 to lbseful, since both are constructed according to
the PE principle(figure U animal) A F ={R5} in D1; (treeu greenu flower-bearing A F ={R8}

in D2.

3.2. A Level Theory for Concretism
8§27 Abstracta and Concreta

For Schopenhauer, concepts are not uniform; rakieedistinguishes concepts into different levels,
which are classified according to the degree ofrabBon or concretion. As described in 811, the
reference to various levels is justified by theegdiry of the building: Terms with different degrees
of abstraction are assigned to different levelghefbuilding. Although all terms are abstract, they
can be divided (inauthentically) intabstractaand concreta Since we will see below that the
division into abstractaand concretais too imprecise, we add a level degree for cotsc€p, in
short: C-level, which is determined by the number of alustom steps1® level G 2™ level G n
level C

8§28 Law of Reciprocity

Each concept has a certain circumference and dof&8np. 258]. From a modern point of view,
one can call the circumference the extension aactdmtent the intension. Extension and intension
of a concept(Cg,:, Cin:) Stand thereby in an inverse relationship: Thegdarthe extension of a
concept, the smaller the intension amck versalf, for example(g,; can be described by a natural
numberx of a sequence fromton ([0,n] := {x € Ny| 0 <x <n}), thenf(x) = n — x applies

to C;,:. This relationship can be called the Law of Remifily, which became prominent through
Kantian logic [11], [21]. If the number @-level is known, then a suitable quantity can hesgifor

n with the following formulan = number of C-levels- 1. Let us take the following example: If
we set the number of C-levels 6, thenn = 5. FurthermoreCg,; =5, if Cipe = 0. If Cgyr = 4,
thenC,,; =1, etc.
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§29Building Scheme

With the building allegory given in 8811, 27 Crxe =5 Cme =0

we can now set up a scheme (Fig. 3) that

. Conceptuz | A Conceptual
|IIusFrates_ thg example_ of_ a Law of Concretion § . Abstractiol
Reciprocity withn = 5 given in 828. Due '

to the lack of space, the scheme is . =1 - Crnp = 4
abbreviated betweez” level Cand6™ level 2" level C "

C, as indicated by the dotted arrows. Here Conceptuz 4 Conceptual

3% level C (Cgpr =2 and Cpp = 3), 4" Concretion Abstractior
level C(Cgye =3 andCpye =2), 5" levelC ¢, =0 1% level C Cong =5
(Cgxt = 4 andCy,,; = 1) are missing. At the Objectua Objectual

very bottom is the object that is given in

A . Concretion Abstractior
intuitive representation. AIlIC levels are _
abstractions from intuitive representation. Object

Therefore concepts are also called abstract _ .
representations or representations  of Fig. 3 Building Scheme
representations (8811, 12).

830 Abstraction and Concretion

We see in the building scheme (Fig. 3) that betweaoh level processes of abstraction and
concretization take place. If one takes up the modkstinction [9], [29] betweenbjectualand
conceptual abstractionfor concretion), one can also make a correspondiagsification of
processes, as can be seen in Fig. 3. Only for ptmaleabstraction and concretion applies the Law
of Reciprocity (828): If conceptual concretion tak@ace C loses a degree of extension but gains a
degree of intension. In the case of conceptuakatigin,C gains a degree of extension but loses a
degree of intension. Note that the sequence fidmn (828) is a degree and does not indicate the
actual number of given objects. Since conceptsalwvays general (810), we can only indicate the
degree of the relation betwedh,; and C,,;, but never the exact number of possible objects
designated b¢.

831 Designation®f C-levels

By the building scheme (Fig. 3) it is well recogeuzthatbeing-abstraceindbeing-concretare in
most cases relative designations: A term has &velabstraction and concretion if it ha€devel
above and a term below it. For exampl@"Hevel Cis more abstractompared td* level G but
more concreteompared to th8™ level C In such cases we speakAffstract-Concrete Concepts
or ACC for short. In our example (§828 et setiJand5™ level Care no ACCs, because they have
no C-level either below or above. Thus, we can calf'devel Cas aBottom-Level Concreturar
BLC and5" level Ca Top-Level Abstracturor TLA. These designations cannot only be justified
diagrammatically but also by using the degreeS;of andC,,;. For TLA, Cg,; = n andCp,; = 0;

for BLC, Cg,; = 0 andC,,; = n; and for all ACC(g,; andC,,; must be> 0 and< n.

832 Concept and Object

According to 889, 30, a concept is an objectuatrabson of certain objects given in intuitive
representation. According to the building schen6)8this definition applies directly to a BLC or
1% level G while all other concepts on a higi@ilevel are abstractions from the low@devels, i.e.
conceptual abstractions (830). A concretion of acept at a higheC-level (ACC and TLA) can
therefore only be achieved by its reduction to &RBir 1*' level C What this concretion of BLCs
might look like, however, is only indicated in Sgemhauer’s work: One can say that that objectual
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concretion is made for instance through deictienesices (“Hindeuten”, 814) accompanying speech
acts'® For example, pointing to a certain object whemgdLCs such aged, dog, or house(§11)
may be an act of concretion. Anyway, we have repmesl objectual concretion and abstraction by
a simple line in Fig. 3 to illustrate the differento conceptual concretion or abstraction illustlat
by arrows.

3.3. Concretion of Concretism with Schopenhauer Dgrams
833 A Level Theory for Schopenhauer Diagrams

But how can the level theory established in Secldhbe applied to the Schopenhauer diagrams
outlined in Section 3.1? A key to this attempt akimg concretism more concrete with the help of
a diagrammatic dimension is to focus on the etygiold meaning of abstraction and concretion
(811) and its isomorphism with the four principtEsSchopenhauer diagrams, i.e. Pl, Cl, PE, CE
(88 20-23). In the following, we assume that th@rikciples Pl and CI correspond to concretion,
but the E-principles PE and CE to abstraction. Tais be seen in the design of Schopenhauer
diagrams since in the case of I-principles sphgrew togetherdoncrescerg whereas in the case
of E-principles they are subtracted from each ofhlestraherg.

834 Definitions

We now use the Law of Reciprocity (8812, 28) angt e more a region (8825-26) is restricted
by I-principles (, ), the higher is the degree of intensidh,f) and the more concrete is the
concept. But the more a region is defined by Eqpies @,\), the higher the degree of extension
(Cgxt) and the more abstract the concept. We further eefiat the C-principles have a higher
concretion (CI) or abstraction (CE) than the P-gptes (PI, PC), if the concepts determined by
them are related in one diagram.

8§35 First Example: D1

In D1, according to 826, we find five regions tlzain be described by all four principles. By
referring to 822, we see that the regions {R1}, JRfR3}, and {R4} are in a balanced CE ratio:
Each of these four regions is completely excludethftwo others. Thus, for {R1}, {R2}, {R3} and
{R4}, the level degree cannot be determined by &&tording to 826, this does not apply to {R5}:
Since {R5} =(figure U animal) A F and sincdriangle < figure (ClI-1) andbird < animal (CI-2),
according to the transitivity-relation of CI (82#)applies that {R5} =(triangle U bird) A F. Thus
{R5} is completely excluded from all other concegitspheres. {R1} and {R3} must be considered
as1® level Cor BLC according to the definitions given in §3Ace they are the only conceptual
spheres to which CI principles can be applied Gke& and CI-2 above). For {R2} and {R4}, they
partly exclude and partly include terms, i.e. (PEXR2}; (PI-2) = {R4}; (PE-1) = {R2}; (PE-2) =
{R4} (823).

8§36 Evaluation of D1

Let us summarize the results of 835. For {R5} isnptetely excluded from all other conceptual
spheres, {R2} and {R4} are partially included, pally excluded, but {R1} and {R3} are
completely included, then applies: {R5} = TLA'{ level Q, {R2} and {R4} = ACCs @" level O,
{R1} and {R3} = BLCs (I*'level Q. So since D1 denotes@levels, it makes sense to set 2
(825) and determine that for {R%}g,; = 2 andCp,,; =0, {R2} as well as {R4}Cg,; =1 and
Cit =1, and {R1} as well as {R3¥XE,: = 0 andC,,; = 2 applies.
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837 Second Example: D2

According to 826, we find eight regions in D2 tleah be described by three principles, i.e. PI, PE,
and CE. Furthermore, 826 says that the only CEore {R8}, which is excluded from all other

regions, i.e(tree U greenu flower-bearing) A F. The regions {R5}, {R6}, {R7} are each formed

by two PE and one PI, e.g. {R6} (green\ tree) n (green\ flower-bearing. The regions {R2},
{R3} and {R4} are each formed by one Pl and one REQ. {R2}= (greenntree) \
flower-bearing {R1}, however, is constructed without E-principlenly by PI, e.ggreenn treen
flower-bearing

§38 Evaluation of D2

Let us summarize the results of §37. For {R8} isnptetely excluded from all other spheres of
concepts, {R5}, {R6} and {R7} are partly include@artly excluded, but {R1} is partly included by
all spheres, then applies: {R8} = TLA level Q, {R5}, {R6} and {R7} = ACC (3" level Q,
{R2}, {R3} and {R4} = ACC (2"level Q and {R1} = BLC (1*'level Q. So since D2 denotesG
levels, it makes sense to set 3 (828) and determine that for {R&;,, = 3 andC;,, = 0, for
{R5}, {R6} and {R7} Cg,; =2 andCp,; =1, for {R2}, {R3} and {R4} Cg,; =1 and(,,; = 2
and for {R1} Cg,; = 0 andC;,,; = 3 applies.

839 Concretization

According to 813, there must be a way back to imeiiphenomena in D1 and D2 if concepts are
meaningful [deutlich]. In D1 this means a way b&zkhe two BLCs, either {R1} or {R3}. In D2 a
reduction to {R1} is required. For {R1} in D1, fa@xample, we can say that it is a BLC to which
not only the conceptigure but alsotriangle applies. In {R1} in D2 we can say that the BLC
designates an object that can be described witkxpeessiongreen tree, andflower-bearing All
terms or regions in D1 and D2 which are connectitd &t least one BLC by an I-principle can be
traced back.

840 Top-Level Abstracta

However, TLAs cannot be traced back to BLCs as #reyassociated with all other terms by the
CE-principle. TLAs are therefore characterized lgy flact that they are negations of all other terms
that are marked in a diagram. From {R8} in D2, éample, we know that it denotes all objects
that are not green, not a tree, and not flowertbgaiThe amount of objects that it denotes is
immeasurable, especially when compared to the thipat are trees, or that are trees and bear
flowers, etc. But other thamon-tree non-greenandnon-flower-bearingwe know nothing of {R8}

in D2. For Schopenhauer, these TLA are not meaningeutlich], since there are no positive
characteristics. Its extension is very high, bsitifttension is completely low. Because of the only
negative relation to all other concepts in the diag a TLA can therefore not be traced back to a
concretum BLC or intuitive representation. According to theistic criterion (814) TLAs are
therefore only confused [verworren], [23, p. 256hweaningless words.

4. Summary and Outlook

In Section 2, we have presented Schopenhauer'ssophy of language and in particular his theory
of concepts as given in thgerlin Lectures It has been shown that Schopenhauer’s theory of
concepts can be described as reistic in the wiskrsse: Without intuitive representations, there
would be no abstract representations, so all mgéurlimbstractamust be reduced tooncreta

which indicate to intuitive representations. Reisself, however, is a concept that remains abstract
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if it is not concretized, as e.g. Jan Wikl does, by pointing out an ontological and a sd#a
dimension. For Schopenhauer’s theory, howeverdigtenction into ontological and semantic reism
seems not appropriate. Rather, it seems to malee $ercall his approach epistemic concretism due
to the role ofconcretaand their relationship to concrete representatidancretism’, however, is a
term, which Kotarhiski used synonymously with ‘reism’ therefore th@icle of words to describe
Schopenhauer’s theory plays only a minor role. Mucbre important is that Schopenhauer
introduces a further dimension that helps to urtdats his reistic or concretistic philosophy of
language: Schopenhauer uses diagrams to conctkézgegrees of abstraction and concretion of
concepts and their relationship to the intuitivpresentation. We have introduced and discussed
this diagrammatic dimension of his philosophy efgaage in Section 3.

However, research on Schopenhauer’s philosophgirgjuage and Schopenhauer diagrams
is still in its infancy: As already indicated in B8 et seq., for example, we have not yet beentable
elaborate on all dimensions involved in Schopenhigueism. A more precise attempt at
clarification, which we cannot undertake in thipea would have to discuss, for example, the role
of phantasm as a possible reference pointcofcreta (832), but also take into account
Schopenhauer’s idealistic-transcendental philos@pblpiosition with regard to intuitive phenomena.
Furthermore, we have reduced Schopenhauer’'s pbihgsof language here to an instrumental
theory (82). We have also ignored certain contdigiu@approaches in SchopenhaueBsrlin
Lectures

However, in connection with Schopenhauer’'s conemgtithere are many more historical
and systematic questions for future research: langeexplained is Schopenhauer’s influence on
the philosophers and logicians of the early 20thtwwey mentioned in 81. Furthermore, it can be
assumed that Schopenhauer's philosophy of languwzged be made clearer in a critical
comparison with other prominent reists such as tarenor Kotarhiski. Furthermore, the question
remains open whether Schopenhauer’s criterionisf language philosophy also does justice to the
controversial concepts of his own theory, e.g.wiie Platonic idea, etc.

Finally, research on Schopenhauer’s logic diagr@nalso in its infancy: Since Schopenhauer
formulated principles of diagram use mainly for theory of judgement, but not for the philosophy
of language, other further interpretations, develepts, and applications of his diagrams are
conceivable. Of course, the results presenteddiereld also be applied to more complex diagrams
that have more than four spheres and where altiptes are involved. Furthermore, the question
arises as to the relationship of Schopenhauer ahagito historical ones, e.g. Euler, Kant, Krause,
Venn, Peirce diagrams, or to modern systems ofrailag in semantics or logic. This raises the
guestion of which ‘observable advantages’ Schopasthdiagrams have and which principles and
notations are best suited to describe them [28],Ifi2this paper, however, it was our sole aim to
show Schopenhauer’s reistic position in MBerlin Lecturesand its concretization through
Schopenhauer diagrams.
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Notes

1. A slightly modified re-print was published by Volk8pierling in 1984ff. A new edition of the
lectures by Daniel Schubbe is currently being miigd at Felix Meiner Verlag. The publication of
the part containing Schopenhauer’s considerationsiroguage and logic is currently scheduled for
December 2020. An English translation does noeyasit.

2. Beiser points out that the interest in Schopenhaeaked between the years 1860 and 1914.
Significantly, this is also a period in which theuhding texts of modern philosophy of language
appear. Whether there is any relation between ttvesdacts, however, needs further examination,
even if it has already been pointed out that Schiopger’'s philosophy had an impact on
Wittgenstein [18], and there is an obvious receptid Schopenhauer in Logical Positivism (e.g.
Béla Juhos wrote his PhD-thesis on Schopenhaue} &2l Moritz Schlick lectures on
Schopenhauer [22]) and in the Lvov-Warsaw Schagl @chopenhauer was quoted at various texts
of Kazimierz Twardowski and Kotanski wrote the introduction to the Polish translatiof
Schopenhauer’Eristic Dialectic[17]).

3. In this respect, Kotarhski is very precise: “Thus it is obvious that rejson concretism, is a
variation of nominalism” [16, p. 442].

4. In his Lectures he states for example that this is the way of kngwthe world by the
“philosophically crude” people, who have not yeilpsophically reflected upon the world [23, p.
463].

5. In his Berlin period, Schopenhauer found the temattiral education” for this, by which he
postulated that empirical experience precede attdtrmwledge [26, p. 260; 27, pp. 562-563].

6. For a more detailed explanation of this, encompgssome terminological problems of
Schopenhauer’s theory, see [7, p. 33 ff.]

7. It has to be pointed out here that Kotashi uses a very similar allegory of paper-money in
reference to abstract concepts and their role enréist outlook: “Every banknote, cheque, and
promissory note must be exchangeable into goldemmaghd, which does not mean that all payments
are made in gold” [16, p. 444].

8. Interestingly enough, the founder of the Lvov-Wars&chool, Kazimierz Twardowski, also
formulated such criticism of German Idealism [13162].

9. Schopenhauer diagrams are not diagrams of setytHmarnevertheless the notation of set theory
is suitable for describing Schopenhauer diagramscointrast to naive set theory, however, we
normally assign only one principle, and thus onetlseoretical sign, to each relation of two
diagrammatic elements. A detailed study of the timtaof Schopenhauer diagrams is planned for
the future.

10. Schopenhauer assumes that there are also othebilitoss, e.g. though phantasms [6, p. 43
ff.].
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1. Introduction

Relating deontic logic is a deontic logic that astuces an additional condition about relating the
formulas with the normative system into semantgach logic allows for an extensive range of
philosophical considerations, as it does not cjeddfine what a normative system is, and how to
informally understand the so-named evaluation @neation. In this work we will show that this gap
can be filled by referring to the metaethics of Ywlenski. We will learn that both the relating deontic
logic — through a certain response to the so-caliedgensen’s Dilemma as well as Jan Waiski’s
metaethics, which, where it draws on the Standadnilc Logic (SDL), is affected by its problems;
benefit from the abové.

We will begin with a brief presentation of SDL aitsl fundamental problems associated with
individual theses or rules. Subsequently, we withws how relating deontic logic allows us to avoid
these problems. Then, we will outline Wiad&i's metaethical stance, in order to combine ithwi
informal aspects of relating deontic logic in thetlpart of the paper.

The primary objective of the paper is to indicdtee effectiveness of combining two
independent stances: logical and metaethical. drptper, we limit ourselves merely to deontic lpgic
to the normative concepts analysed herein, whilétimg what is also the subject of Jan Wddki's
analyses and also find formal representationsr{ofegy close to deontic ones), that is, imperasind
bonitive sentences, or more broadly: axiologicamt the same time, we omit many formal details
related to the relating deontic logic, or more ldtgdo the relating logic as such, see [9], [1QR]i

2. The Standard Deontic Logic and its Problems

In SDL, the modal concepts of obligation and pesinis correspond to the alethic concepts of
necessity and possibility, respectively. The elentbat distinguishes SDL within the family of all
modal logics is the validity of the axiom (D). Teandard model of the semantics of possible worlds
for deontic logic takes the following form:

<W, Q, v>

where W is a non-empty set of possible world3,is a serial relation of accessibility between the
worlds, andv is a classical valuation of propositional variabie the possible worlds. Hilpinen [5, p.
163] describes the possibility of deontic interptiein of such a model in the following way:

[...] the “standard semantics” [i.e. possible werkEmantics] of deontic logic [...] gives an
intuitively plausible account of the meanings ohgie deontic sentences when the deontic
alternatives to a given world u are taken to beld@go(or situations) in which everything
that is obligatory at u is the case; they are vsild which all obligations are fulfilled.
Hence, the worlds related to a given world u byaBcgssibility relation, authors] may be
termed deontically perfect or ideal worlds (relatte u).

According to Hintikka [7, p. 189], deontic alterivais are different possible variations of the aliti
world, where the deontic values, required from peespective of some normative system, occur
simultaneously. “These deontic alternatives areo dideontically perfect worlds” of sorts: all
obligations, both these that obtain in the actuadldvand those that would obtain in such an altiraa
possible world, are assumed to be fulfilled in eatcthem.”

Consequently, what is obligatory must occur insalth worlds; whereas, what is permitted
must occur in at least one.
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However, let us point out that in deontic altevedi the sentences that are not obligations in
the given normative system, may be true. Thusethez sentences that do not express obligatiohs, bu
carry some deontically neutral content. So, howistinguish those sentences that are true and €xpre
obligations from the ones that are true but caegntically neutral content? Moreover — as we well
know — the standard approach leads to various presd such as the Ross paradox, the good
Samaritan paradox, or the paradoxes of derivedjatodin, extensively described in the literaturelon
subject, see [1, pp. 268-270], [5, pp. 163-167],dpe. 58-64]. Some of them, as described by Carmo
and Jones [1, p. 268], result from the closure ¢ bbligation operatoO under the logical
consequence relation. “The first group of paraddwaesits origin in the closure of tldeoperator under
logical consequence (that is, in the fact that Slile, any normal modal logic, contains the (RM)-exul
if -A— B, thent+ OA— OB

Another problem is closure under the Necessitalube, that results in any logical truth
expressing obligation in each deontic situatiorldwong Carmo and Jones [1, p. 270], it can beestat
that: “A second problem of SDL has do the with @aecessitation rule itself, according to which any
tautology (more generally, any theorem) is obligatovhich is incompatible with the idea that
obligations should be possible to fulfil and poksiio violate.”

By all means, the closure under the Necessitatige R combination with axiom (K) classical
logic and the Detachment Rule, allows for derivthg (RM)-rule. Thus, it allows us to obtain the
same paradoxes as due to the (RM)-rule. The plitysib create an obligation from each logicalttru
is also strange because the laws of logic mayemain related to the given normative system whose
perspective we are aiming to consider. Logical htraeed not be obligatory, nor logical false
prohibited, since, from the perspective of the givermative system, they can be completely non-
relevant. That is to say, SDL allows for too wideapproach to obligation, prohibition and permissio

3. Relating Deontic Logic

Relating deontic logic is based on the empiricatesbation that any sentence that is obligatory,
prohibited or permitted, is such from the perspecof some value system, or, to put it simply, a
normative system. Thus, from the empirical pointva#w, there are no absolute obligations, nor
absolute permissions. Thus, when referring to digaton, prohibition or permission, we always do s
with regard to some value system which orders, fieron prohibits.

The above observation leads to the conclusionttieasentences that do not remain related to
the considered normative system, express neithegation nor prohibition — their content is simply
neutral. On the other hand, the sentences thatearteal in relation to the given normative systdates
what is undoubtedly allowed by the given system,tifi@y cannot express prohibition. Similarly, no
sentence that is obligatory from the perspectiva given normative system can carry neutral content
since a normative system does not prohibit anythirggnot related to. In order to take into accoon
the formal ground the above-given observationscaraplement the conventionally defined semantics
of deontic logic with a new element, that is, a ilsiraf subsets of a set of formulas:

{RW}WEW1

thus obtaining the following ordered quadruple

<W, Q, V, {RW}WEW>.
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Consequently, for every possible world, we deteemansubset of formulas, thus representing the fact
that, in the given world, the given sentences al&ed to the given normative system. This relatiam
be generally termed as the deontic relationship.

In the universe of varying possible worlds, sometesgaces may become deontically related,
while others may cease to be such. The qualityenfigodeontically related can be understood as a
deontic relevance, which is an opposite to beingtraé with respect to the given normative system.
Hence, as we can see, in our semantics thered&@xt representation of a normative system, imstea
we take into account its perspective by differdimg two sentences expressing what is, and,
respectively, what is not related to the system.

The introduction of the deontic relationship’s negentation into the model results in a
substantial change in the truth-conditions for disosentences. In the proposed approach, whatemgiv
sentence states is obligatory, provided that idadintic alternatives, the sentence is true anchiresm
related to the given normative system, which ifodews:

w = OAIff for all ue W, if Q(w,u), thenu = AandA€ER;.

Whereas, what a given sentence states is perniitteds true in some deontic alternative, or istno
related to the normative system, hence, is neuteal,

w E PAIff there isu € W, such thaQ(w,u) and eitheu = AorA ¢ R,.

The above presented semantics constitute a paricombination of the possible-worlds semantics
with the relating semantics. The semantics of #itel type were discussed in detail in [9], and its
specific cases in [11]. The basis of such semamgidhe evaluation of connection, i.e. the function
defined for a given intentional functer of arity n, mappingn-th Cartesian product of the sets of
formulas of a given language into a set of elemegesenting the values of connection values
between the given sentences:

fo: For— VC,

where For is a set of formulas of a given languagée, VC is a non-empty set of the connection values
In the case of deontic language, the matter ingltwe unary intensional functors — deontic opesator
Consequently, in each world, we can introduce aaluation of connection with two connection
values. Such evaluations determine the subsetrwiufas in each world, on the basis of the indicato
function. In this particular case, the evaluatibic@nnection becomes similar to the awareness ifumct
introduced by Fagin and Halpern [4] within the satits of epistemic logic. Notice that the above-
given truth-conditions of the deontic operatordatiffrom the conditions introduced by Fagin and
Halpern [4, p. 53] for the epistemic operator. Miwer, contrary to Fagin and Halpern, we introduce
into the language neither the alethic modalities, any particular kind of operator which would
constitute a linguistic equivalent of the new eleina the model.

The work by Jarmiek and Klonowski [11] analyses models of relatiegmtic logic, in which
instead of an indexed family of subsets of formukas indexed family of binary relations occurring
between the formulas was considered. In this daseunary approach was defined within the binary
approach; that is, the family of subsets of forrautadexed by possible worlds was defined by means
of the family of binary relations defined on thé eéformulas indexed by possible worlds. Hence, th
relation with the normative system was defined &gting the sentences. Such an approach becomes
clear with regard to the analysis of deontic cotgdiRrough reference to various binary relationshs
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as: causal relation, time sequence, relations letvaetion and sanction or action and issue of a
relevant document, etc.

Needless to say, the binary relation, definedhsyformulas, constitutes a special case of the
evaluation of connection. The semantics based ch surelation constitutes a special case of the
relating semantics obtained through limiting tha@leation of connection to the function defined on a
Cartesian product of the set of the formulas withivalent codomain. Such a relational semantics
probably has its origin in the work of Epstein [2h example of its application may be the analpsis
the content relationships which is the foundatibrthe so-named relatedness logics and dependence
logics defined by Epstein [2], [3, pp. 61-84, 143]Lwith some particular conditions imposed on the
models. A more general approach — where the sgapiiint are models containing all binary relations
specified on the set of formulas — proposed by dazei and Kaczkowski [10] and explored by
Jarmuek and Klonowski [12] (cf. [9]).

4. Jan Wolenski’'s Metaethics

In the metaethics of Jan Wakki, the following two theses come to the fdr@) naturalism, and (i)
non-linguistic conception of norms. These theses iadependent, and their combination is not
common; however, the main idea is that the latippsrts the former of more general nattire.

Jan Woléski’s metaethical naturalism is notably a consegaent his broader argumentation
for naturalism in philosophy (see [21]). However,oMiski also presents detailed metaethical
arguments for naturalism, which at the same tinteeshis key issues, as well as arguments against
antinaturalism. We will only briefly outline the sibimportant line of argumentation in which occurs

(ii).

In his metaethical works, Waiski devotes a lot of attention to the so-called ldishguillotine,
setting it, in a way, in the centre of metaethmahsiderations. Let us recall the well-known prabie
the words of John Searle [16, p. 43]:

It is often said that one cannot derive an “oudhdim an “is”. This thesis, which comes
from a famous passage in Humg&igatise while not as clear as it might be, is at leasécl

in broad outline: there is a class of statemenfaafwhich is logically distinct from a class
of statements of value. No set of statements dffgchemselves entails any statement of
value. Put in more contemporary terminology, noo$@tescriptivestatements can entail an
evaluativestatement without the addition of at least oneluatave premise. To believe
otherwise is to commit what has been called therahstic fallacy.

The last sentence explains the meaning of Humetseents on the naturalistic metaethics. \iisle
indicates that the problem can be generalised, samgply the relations between normative and
descriptive sentences can be discussed. If theatwensentences will be understood as in the deonti
logic, that is, with the operators “it is permittddht”, “it is obligatory that”, “it is indifferenthat” and
optionally with other ones, then the generalisednHis thesis, according to Walki, takes the
following form (where sentenckis descriptive, non-tautological and non-deonté,does not include
deontic operator,D” is one of the deontic operators, ang’“‘expresses that a semantic consequence

relationk= doesn't hold):

(1) A% DA
(2) DA ¥ A.
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According to Woléski, the generalised Hume’s thesis “can be desdri®® a thesis of logical
separation of being (facts) and obligation” [20, 38]. Both constituents of the thesis should be
considered in the naturalistic metaethics. Note Hwh the SDL and the relating deontic logic do
satisfy (1) and (2), provided that they are exprdsa the object languade.

He bases his deliberations on two axes of disputenetaethics (see e.g. [19, p. 246]):
naturalism vs antinaturalism and cognitivism vs eagnitivism. To put it simply, the naturalist
believes that norms are part of the empirical tgalnd the antinaturalist places them outside the
empirical reality. The cognitivist assigns logiaalues to norms, and the noncognitivist believed th
they have no logical values (various forms of iliea). In defending naturalism, Waiski is not
explicitly in favour of cognitivism or noncongnitsm, as he challenges their underlying assumption
that norms are linguistic entities. Thus, in a wWag/ shifts the issue of truth and falsehood frommrso-
as in the dispute between cognitivism and nonciMistit — to normative sentenceés.

The thesis about the non-linguistic character am®ois crucial in Wolgski’s argumentation. It
presents four negative arguments in its favour st&ting what norms are not — they are not linguis
entities; and one positive argument, i.e. statim@atwnorms are (see, e.g. [20, p. 39]). The firsteh
refer to linguistic practice (especially legal fdre€) and point to a categorical error: when we they
we comply with norms, that a norm applies, or thatms have social causes and effects, we do not
mean linguistic expressions, we do not refer tateseres (cf. [15, p. 26]). The fourth argument is
grammatical: we distinguish declarative, interroggtand imperative sentences rather than normative
sentences, which means that the latter must beceddio one of these three types. Wele argues
that the choice of two types: declarative sentenfesgnitivism) and imperative sentences
(noncognitivism) results in problems for these dfaoints®

The positive argument indicates what standardsifaiteey are not of a linguistic character.
Wolenski's idea, also developed in his works with Kazmi Opatka, involves extending Austin’s
concept of performatives to the normative sphareshort: “We claim that normalisation is an act of
some kind, a norm is the result of such an act,aandrmative utterance — the expression of a norm”
(see [15, p. 27]).

Consequently, according to Twardowski’'s divisiatoi acts and their products, there are three
components: the act of normalisation, the prodddhe act in the form of a norm, and normative
utterance related to the norm (the expression @fibrm). The naturalistic consequences are easy to
identify: norms are not from a non-empirical reglibut are the products of the decisions takenhiy t
norm-maker and the performative acts related tmthbkat is, certain actions in the world. Everymor
was once established by someone (also collectivedierstood social entities) through a performative
act. This approach is not burdened by the categjoeor mentioned above: when referring to the
validity, observance or application of a norm, \eéer to the corresponding relation to the normative
product of the performative act.

Although norms are not linguistic expressions,ytltan be communicated by means of
linguistic expressions. Such utterances take thewong general form:

(*) I order (prohibit, permit in terms of makingiitdifferent) A.

As we know, Austin did not attribute logical valumsperformative utterances; instead, he referoed t
the conditions of their effectiveness: they areeite if a number of factual and formal conditioas
met. Woléski solves this problem by distinguishing the perfative, that is, a certain action, from a
performative utterance. “Effectiveness is not atemabf statements, but of actions. Provided that a
given performative is effective, the relevant parfative utterance is true, e.g. the sentdrareler that
A'is true if effectiveness conditions for effectiess of obligations are met” [20, p. 41].
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The performative utterances that fall within (*jyeacalled “primary normative utterances”. A
set of such statements together with their logioalsequences — plus possible restrictions, suobras
contradiction — form a normative system. On theepthand, deontic sentences are “secondary
normative utterances”, and their logical value aejseon the logical value of the primary normative
utterances. “A normative system can also be defazed set of true deontic sentences and theirdbgic
consequences, relativised to the given normalisafi0, footnote 33].

Since both primary and secondary normative uttesrconstitute declarative sentences, ergo,
bear logical value — when certain additional statidaonditions are met, e.g. elimination of
indexicality — there is no need to introduce themmas a new semantic category. Since all the
components of such a theory are elements of erapigality, the result is a naturalistic stafice.

The combination of naturalism with the non-lindicisconcept of norms results in a coherent
metaethical stance, which Wakki combines with the classical approach to thentiecsentences
expressed in SDL. Such a combination is not necgs$ait constitutes a certain methodological
requirement respected by Woaski on many other occasions: a philosophical stastveuld be
consistent with the basic logical representatiogieén concepts, e.g. based on the generalisedesqua
of opposition or related to correctly interpreteddal (most often normal) logics. Compliance with
such a requirement is an important advantage ofef8ki's philosophy (including metaethics).
However, it should be remembered that such bagi lfaces many issues — shown above on the
example of SDL in section 2. While solving theseljpems, relating deontic logic retains selected
logical values of deontic concepts.

5. Normative Inferences, Metaethical Naturalism andeontic Relationship

One of the fundamental metaethical issues is tlobl@gm of the validity of normative inferences.
Having defined the basic normative concepts, welavbke to employ them in conducting inferences.
However, according to non-cognitivists, norms docgasry logical values; thus, they cannot be diyect
implemented into inferences. We have seen thatetaethics this problem is seen as associated with
Hume’s scepticism, whereas within the field of deologic, it appears from the beginning in thenfior

of the so-called@rgensen’s Dilemmad.et us recall it in its original form [13. 290]

So we have the following puzzle: According to a eyatly accepted definition of logical
inference only sentences which are capable of beiregor false can function as premises
or conclusions in an inference; nevertheless imseevident that a conclusion in the
imperative mood may be drawn from two premisesainehich or both of which are in the
imperative mood. How is this puzzle to be dealtb®it

Let us note that Hume’s guillotine is usually liedt— as happened in Searle’s words quoted abave —t
the situations when among the premises, there isahdeast one normative premise. From the
perspective of logic, however, it does not have moteaning: if one, non-exclusive premise and
conclusion do not carry logical values, it is natspible to evaluate the validity of the reasoning.
Hence, drgensen’sapproach is more general: it considers possiliéFences, while Hume’s approach
was an expression of scepticism towards the theomyorality as such.

The fact is that we perform inferences, in whidmmative sentences play the main or indirect
role:

(1) While driving his car, John turned right.
(2) There was an obligation to turn left théte.
(3) John broke the traffic laws.
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There is no doubt that the sentence (1) can bgreessia logical value (provided that we interpret
properly indexicality, vagueness etc.) — it is ateace about a certain event occurring in the world
The sentence (2), which describes the traffic mdesses more doubts. Of course, there is probably a
appropriate road sign in the place referred tdhia $entence, but this sentence does not simpbkspe
of its presence in this place but states the engst®f a corresponding norm. Also, the sentences(3)
not merely a sentence about an event in the wbdtyefers to the connection of such an event with
the norm expressed in the sentence (2) — similaclasions can also be drawn, e.g. “John should not
turn right”. So, can we assign logical values toterces (2) and (3)?

The existence of such inferences in legal or elayycontexts, constitutes an indirect but quite
strong argument in favour of the fact that theseeseces bear logical values or, in a way, areed|at
the sentences that bear logical values. Such amg@s®n is also made within relating deontic logics
with a remark that such inferences are limitedh® given normative system and are performed only
within its boundaries. In other words, sentencesikhbe related to the same normative systefhe
advantage of such an approach is that it allowts asoid SDL problems.

Consequently, does the normative system consttgts of only the sentences that bear logical
values? If so, then how is this set determined,ahanwhat constitutes a deontic relationship within
this set? If not, then what else can constituteetements of this set? Within logic, it is not nesary to
determine this, and it is its unquestionable stitenigowever, in order to build a complete metaethic
theory, at the same time, we have to look for awan to solve@gensen’s Dilemma.

Wolenski, as mentioned in the previous section, undedstahe normative system as a set of
true normative sentences (primary or secondaryifdanto a given normalisation. Nevertheless, it is
worth stressing that all the circumstances reldtedhe conditions of effectivity of the relevant
normative performatives are important for the cimtsdn of such a set. Declarative sentences descri
these circumstances, e.g. if | order someone tortght, then one of the conditions is that thistwas
permitted, that is, for the following sentence #ttue “On such and such a road, and in such asid su
a place there is a right turn.” These sentencesa@trpart of the normative system but are relabeithe
normative system. It is easy to notice the appbecabf such an approach on the grounds of relating
deontic logic, where it is assumed in the integdieh of deontic operators that the constituent
sentences are related to the normative system. Fhims order to preserve the basic features of
Wolenski's naturalistic metaethics — we should not ustierd it narrowly, as belonging to the system,
but broadly, as being in relation to the normatsystem. In relation to the constitution of the
effectivity of performative acts, which constituteth-conditions of the primary normative sentences
which, in turn, are truth-conditions for deonticg=nces.

Such an approach provides intuitive criteria @ Walidity of the normative reasonings. Firstly,
if these sentences consist of deontic phrasesnoelsow depend on the validity of the norms, thery the
have logical values that depend on the effectioftpormative performative acts of the norm-maker.
Secondly, the sentences used in the inference dheulelated to the normative system. Consequently,
in fact, most of the common normative inferencegehan enthymematic character. In the example
considered above, these are the sentences thatddheé effectivity of the performative act of the
manager of a given road, that is, e.g. it had allemundation, but also the factual circumstantest
Is, e.g. that actually there was a turn and a retd, A moment of reflection is enough to consisiezh
consequences as natural and really related todttmeative inference:

6. Summary

The value of philosophical logics lies mainly iretfact that they can constitute a common ground for
philosophical dispute, providing tools to describe aporias occurring there. Nevertheless, it hagppe
that such logics exclude certain stances, indigatieir contradiction or undesirable consequences.
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In Jan Woléski’s philosophy, it is essential that the proposellitions are consistent with the
basic logical properties of the analysed concéptthe metaethical approach, Wind&i emphasises the
relations from the generalised square of opposidnd Hume’s principle. These are the minimum
requirements that lead to standard deontic logmatdralism is, thus, logically consistent. It isliwe
known, however, that such a simple logic faces margblems that would also affect the given
metaethical naturalism. The relating deontical degdescribed herein allow us to address specific
problems, and at the same time, they acquire aogwphical interpretation related to naturalism
justified by the non-linguistic concept of normshiah allows us to respond térgensen’s Dilemma
and work out its informal details.
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Notes

1. Clearly, both approaches retain their independentaking one of them does not force adoption of
the other — however, combining them into a unifdramework, although merely outlined herein,
provides a new tool for analysing normative reasgni

2. More on this subject in [11, section 2.2].

3. Metaethical issues were the subject of Jan Wblies work from the beginning of his scientific
career (see [17]), summarised by the bdokagadnié analitycznej filozofii prawgsee [18]; new,
revised and extended edition: Wiadki 2012). Some ideas, mainly the non-linguistioazption of
norms, he developed in collaboration with Kazimi@patek (see [15]). Opatek [14] also defended it
independently. The short description below we hiaased mainly on the newest publications: [19],
[20], [21]. Woleiski repeatedly points out that his defence of radiem in metaethics is not
categorical, thus — in other words — it is mostlyoasequence of some set of abductive argumengs. Th
contribution of Polish philosophers, including Waski, to metaethics is discussed in a review work of
Jadacki [8].

4. Wolenski also discusses metaethical issues relatecetbdhitive sentences, adopting the standpoint
of axiological presentationism. In this study, stablishing the relations with deontic logic, wmili
ourselves merely to describing the metaethics ahative sentences.

5. Wolenski employs “deductibility symbol’1:—, that is, a symbol of syntactic consequence. Hewev
in the context of Hume’s guillotine and related lgeons, we prefer to employ semantic consequence,
since it assumes that the sentences carry logitaés, while, on the extralogical basis, it is flassto
imagine that something is syntactically deduct{bhg simply performing acceptable transformations of
the original schemes), and at the same time ibereitue, nor false.

6. That is, by means of material implication. If, urrt, we allowA to be tautological, then, in result,
we get one of the SDL problems which can be eadilyinated within relating deontic logic, by
replacing the material implication with the relgtimplication, in which truth depends on the logica
value of the constituent sentences and the ocargreithe relations between them (see [10], [12]).

7. "My preferences rather lie with noncognitivism, migi because, nonetheless, the settlement of
ethical disputes differs from the settlement of emal disputes. On the other hand, as mentioned
before, there seem to be no rational reasons tp ttienaxiological sentences the value of truthadsd.
However, this must be done with full understandimag it is not a matter of correlation between ¢hes
sentences and natural reality in a narrow sengepfliouth in an appropriate deontic model relative
performatives, or in a bonitive model relative iaodogical presentations” [20, p. 46].

8. Can’'t we also consider the interrogative sentendasfts direct form this would probably be
challenging, but it is not out of the question tst@ndards can be related to a set of answersedain
question. This concept is not further discussediher

9. And yet, does the non-linguistic concept of norrawally somehow force metaethical naturalism?
While certain doubts arise at this point, it is thonoticing that even though the norm as an act
constitutes a component of empirical reality, ohthe conditions for the effectivity of such an atay

be from outside of such reality. In other wordssihot impossible for the normative performative a
to be a kind of transfer of the norm from a non-gioal into empirical reality, to be in a way
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“embodiment of a (proper) norm”. Additional argurteeare needed to weaken the occurrence of such
a possibility. So, it may not be as easy to givérapscendence as imputed to naturalists.

10. This sentence can be formulated in a similar orivedent way (e.g. whether we formulate a
normative rule in general, or as one concerningi Jih., nuances are not relevant here): John should
have turned left; Left turn was obligatory; Johmswaquired to turn left, etc.

11. The above reservations are also made in favourttemats to formalise a broad category of
axiological sentences, including bonitive, evalmtias well as imperative sentences and directives.
The above example can be accordingly modified.

12. Needless to say, these sentences, individually, afey belong to other normative systems, but
then — which is very intuitive — the validity ofe¢hnference cannot be considered. Are inter-norraati
inferences allowed, i.e. when the components ofrtfexence belong to different normative systems?
Perhaps, as far as they at least intersect.

13. Referring to our exemplary inference: what perfdiv@gaacts are behind the truth of sentence (2)?
It is a performative act performed by the road nga@nawho, on the basis of the result of other
performative — here: legislative (legal act, retjalg — established traffic rules in the described
location.

14. Of course, some of them are shared with other caomimierences, which are usually simplified,
concealing the premises that are clear for intetlms, not announcing the conclusion. etc. Thus, th
characteristic attribute of normative inferenceg @sychological conditions, which indicate, for
example, that the norm-maker actually has an im@erib create such and not another law, that he has
appropriate powers to do so, etc.
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Abstract

This note discusses some problems concerning ietergtandard, and non-
standard models of mathematical theories. We ptntain to the role of
extremal axioms in attempts at a unique charaetgoiz of the intended
models. We recall also Jan Widki's views on these issues.
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1. TheDistinction: Intended Modd versus Standard M odd

Mathematical theories may concern either a spekcfiaucture or a class of structures. Examples of
theories of the first kind include theories of famiental number systems (natural numbers,
integers, rational numbers, real numbers, complembers), certain systems of geometry (for
instance Euclidean geometry), and possibly alsotlsedry, at least at the early stage of its
development. Theories of the second kind includeom of groups, fields, topological spaces,
vector spaces, and so on. The distinction in qoestpplies to modern mathematics, it does not
make sense in the case of mathematics before tbaddalf of the 19th century.

The notions of intended, standard and non-stanaderdels may be applied in the case of
theories of the first kind, for obvious reasonse Térms ‘intended model’ and ‘standard model’ are
used sometimes interchangeably in literature. Ippse to distinguish them in the following
manner. The intended model of a theory is a stractthich motivated the development of the
theory in question. As a rule, this structure hasrbinvestigated for a long time and its properties
are based on well-established mathematical inhsti@merging from the research practice.
A necessary condition for a structure to becomentanded model is thus its domestication in the
mathematical research. One could also say thatdettmodels are cognitively accessible to a high
degree. Then there emerges a theory of such dwseyaltimately an axiomatic theory.

The above characterization of the concept ‘intendemtlel’ is intuitive, which in turn
implies that the concept itself is also intuitive prominent example of an intended model in this
sense is the natural number series with arithnmiedigarations defined in the usual way. Rational,
real and complex numbers (as understood beforedhstruction of the corresponding axiomatic
theories of such numbers) provide further exampleseems that the universe of the naive set
theory could also be considered an example inrésigect.
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The notion of a standard model, in turn, may beduced only after the theory in question
has become a fully formalized theory, with overipecified primitive terms and axioms
characterizing them. In this situation the classabfmodels of the theory in question can be
established. This class may consist of only oneahod of many models, which depends on the
language of the theory and the underlying logicpagnother aspects. In the first case we obtain the
standard model at once. In the second case we migychoose one of the models and call it
standard. | propose to call a model ‘standardit i§ most closely related to the intended model.
The similarity between intended and standard mgteluld be based on a kind of isomorphism.
Because the standard model of a theory is a spetdment of the well-defined class of all models
of the theory in question, it is a genuine mathérabbbject and as such it is well-defined, too. We
should remember, however, that the natamdardwas given to it on the basis of our decision. The
latter was supported by the observed resemblandbeostandard model to the intended model
given in advance. It may also happen that certadorems concerning the standard model provide
additional support for our decision. Still, theestlon of the namsetandardis based primarily on
pragmatic criteria.

The standard model of arithmetic is determined welig (up to isomorphism) on the basis
of second-order Peano axioms. In the case ofdindgr Peano arithmetic its standard model is only
one of the continuum many countable models ofttie®ry. According to Tennenbaum’s theorem,
it is the only recursive model of this first-ordbeory. It is also its prime model, meaning thataih
be elementarily embedded in any other model ofthleery in question. Non-standard models of
arithmetic contain infinitely large numbers.

The completely ordered real field (satisfying tlihe upper bound property) is determined
uniquely (up to isomorphism). It is commonly acegpts the standard model of the arithmetical
continuum. It is also a maximal Archimedean field ki is not algebraically closed. The complex
field, in turn, is determined uniquely (up to isamploism) as the only algebraically closed field of
the characteristic zero whose transcendence degegethe field of rational numbers equals the
continuum. No order compatible with the arithmdtimaerations is possible in the field of complex
numbers.

The (first-order) theory of real closed fields isngntically complete, meaning that all
models of this theory are elementarily equivaléet,have the same set of true sentences. The real
numbers, which form a real closed field, are thusracterized uniquely with respect to elementary
equivalence in the first-order language.

The hyperreal field is also elementarily equivalesth the field of real numbers, but it is
not an Archimedean field (it contains infinitesis)al The rather unfortunate namen-standard
analysisgiven to the theory concerning the hyperreal frelagly suggest that hyperreal numbers are
non-standard. However, it is mainly the matter @atmematical research practice to decide, on the
basis of accumulated knowledge and fruitfulnesapylications, which structure should be called
standard.

A paper by Solomon Feferman [8] discusses the murest which formal representations of
the geometric continuum could be thought of asdeteth Feferman lists a few candidates: Euclid's
continuum; Cantor’s continuum; Dedekind's contingidibert's continuum; the continuum as the
set of all branches in the full binary tree; ane ¢tontinuum as the famiR(N) (the full powerset of
the set of all natural numbers). Feferman summatize paper on conceptions of the continuum as
follows:

Of all the conceptions of the continuum considenede, only those of sec. 3 stand as
structural ones, and of those olyandP(N) stand adasicstructural conceptions. For,
the continuum in Euclidean and Hilbertian geomedrgot an isolated notion, while the
continuum as given by Cantor's and Dedekind's caogon of the real numbers, are
hybrid constructions. The s&Y of all sequences of Os and 1s isolates the setetieal
component of Cantor’s construction, while the Bgt)) of all subsets oN isolates that
of Dedekind’s construction, but both of these lestrely the basic geometric intuition
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of the continuum. On the other hand, it does nonhtagainst Cantor’s and Dedekind’s
conceptions of the continuum in the form of thel mamber systenR that they are
hybrids of geometrical, arithmetical and set-th&oneotions. On the contrary, by a kind
of miracle of synergyR has proved to serve together with the natural reret as one
of the two core structures of mathematics; togethey are thesine qua norof our
subject, both pure and applied.

If first-order Zermelo-Fraenkel set theory is catsint (which cannot be proved in the theory itself)
then it has a plentitude of models. It is commadgepted in the mathematical community to call a
model of this theorystandard if the interpretation of the membership prediciatet is the real
membership relation. Models of set theory withdugt &xiom of foundation are usually seen as non-
standard models.

The distinction betweegenuine (normal, natura) etc.) mathematical objects and those
calledunintendedunwilling, imaginary etc.) was noticed in the history of mathematicsnebefore
the second half of the 19th century. For exampgative or imaginary numbers were long rejected
as legitimate mathematical objects before theyllfinbecame accepted by the mathematical
community. It is important to make a distinctiontdheen anon-standard(object) and an
innovation Haim Gaifman discussed the followimgnovationsin mathematics in his paper [11]
devoted to the non-standard models: the discovenyationals; the incorporation of negative and
complex numbers in the numeral system; the extarnsidhe concept diunctionin the nineteenth
century; and the discovery of non-Euclidean geoye@aifman gives arguments that such
innovations should not be considered non-standdedalso discusses certain further candidates for
being a standard mathematical object, includgjl-ordered and constructible sets. The full
powerset operation, on the other hand, escapesthreiiist of standards.

There are several ways of constructing non-stanahadels of mathematical theories. Let us
consider Peano arithmetic (PA). If we expand itgjleage by a new individual constanand take
into account an infinite set of sentences: {—n = c:n € N} (wheren is the numeral denoting the
natural numben), then each of its finite subsets has a modeliafaflows from the compactness
theorem that itself has a model. The denotationcah this model is different from each standard
natural number and hence the model in questionoisstandard. Another possibility, already
anticipated by Thoralf Skolem, is to build a suigabltraproduct (actually, an ultrapower) starting
with the standard model of PA. One can also considall binary tree of expansions of arithmetic
and show that each branch of this tree corresptimdsmodel of PA; one of them is the standard
model, while all others are non-standard models.WwMecome back to the latter possibility below,
discussing Jan Walski’s views on non-standard models.

2. On theOrigin of Metalogical Concepts

Claims about uniqueness of models require preosis bf comparison of the models themselves.
There are essentially two ways of characterizing itidistinguishability of models of a given
theory. One of them is structural: we may ask wetihe models are isomorphic (or partially
isomorphic, or one of them being a homomorphic ienafjthe other, and so on). The notion of
isomorphism emerged in algebraic considerationhénearly 19th century. Isomorphic structures
are structurally indistinguishable. If all modelsaotheoryT are isomorphic, then we say tHats a
categoricaltheory. A theoryrl is categorical in powek (wherex is an infinite cardinal number), if
it has a model of power and all its models of power are isomorphic. It should be stressed that
first-order theories cannot be categorical, witke #xception of certain trivial cases. This is a
consequence of Lowenheim-Skolem-Tarski theorem hvisigys that if a theory (without finite
models) has a model, then it has models of alhit&icardinalities.

Another kind of indistinguishability of models isaged on semantic criteria. We say that two
models areelementarily equivalentf the sets of sentences true in them coincideh&oryT is
(semanticallyompleteif all its models are elementarily equivalenttifo models are isomorphic,
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then they are also elementarily equivalent, ancc@emategoricity implies semantic completeness,
but the converse implication does not hold.

The notion of categoricity originated in the papefsEdward Huntington and Oswald
Veblen. Huntington used the tersufficiencyin 1902 and Veblen replaced it by the term
categoricityin 1904. In the nineteen-twenties Abraham Fraeakel Rudolf Carnap used the term
monomorphy (Monomorphiein German) in the meaning in question. Fraenked &arnap
considered also a kind of semantic completenedkedchy Carnapnon-forkability in German:
nicht-Gabelbarkeijt It should be stressed that before emergenceetifdeveloped metalogic the
notions of categoricity and semantic completenesseewot sharply separated. In the absence of
precise formal logical tools the claim that isomogmn implies semantic indistinguishability was
understood evident by Huntington, Veblen and alsdiex by Richard Dedekind. An important
early contribution to the relationships betweenséhenotions is the paper [15] written by
Lindenbaum and Tarski. Tarski’'s paper [22] from Q9printed as appendix in [16]) elaborates
further this issue. Tarski introduced the notionetdmentary equivalence in the nineteen-fifties.
Many important observations concerning the ememgemd mutual relations between the notions
in question are contained in [1], [6] and [7].

Categoricity, categoricity in power and semantimpteteness were further characterized in
full detail in classical and modern model theorlieile is no need to report on these results here; an
interested reader may consult for example [14]1Gi.[Let us only add that the tools from model
theory are sufficient for talking about several dgnof indistinguishability of models and the
uniqueness of these models.

3. Extremal Axioms

The term ‘extremal axiom’ was introduced in the grajgl] written by Carnap and Bachmann. The
authors tried to present a general form of thesenax using the logical framework of the theory of
types. At the beginning of the paper they writeirigi [S] which is the English translation of [4]):

Some important axiom systems are so constructeaditbiaa series of axioms is given,
making certain statements about the basic concdphe axiomatic theory, and then at
the end an axiom of a special sort appears whiplaraptly speaks about the foregoing
axioms and not about the special concepts of theryh The most famous axiom system
of this sort is Hilbert's axiom system of Euclide@rometry. It ends with the famous
‘completeness axiom’ which runs as follows [Thetfate given here by the authors
reads: D. HilbertGrundlagen der Geometrigeipzig and Berlin). We take the Hilbert
completeness axiom in the form it has in edition8, 2 ot the ‘linear formulation’ of the
7th edition of 1930. — J.P.]:

‘The elements (points, lines, planes) of geometwystitute a system of things which
cannot be extended while maintaining simultaneotisty cited axioms, i.e., it is not
possible to add to this system of points, linesl planes another system of things such
that the system arising from this addition satssé&ioms Al-V1.’

Axioms of this sort, which ascribe to the objecfsano axiomatic theory a maximal
property — in that they assert that there is hoentemprehensive system of things that
satisfies a given series of axioms — we call a makiaxiom. The same axiomatic role
as that of maximal axiom is played in other axigyatems by minimal axioms which
ascribe a minimality property to the objects of thiscipline. Maximal and minimal
axioms we call collectively extremal axioms [5, pB-69].

Besides Hilbert's axiom of completeness in geomégiryich was an axiom of maximality) Carnap
and Bachmann considered two axioms of minimalite induction axiom in arithmetic and
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Fraenkel’s axiom of restriction in set theory. Thager says, roughly speaking, that only these sets
exist whose existence can be proved in set theorg fience the universe of all sets should be as
narrow as possible). Extremal axioms were constlese Carnap and Bachmann as expressing a
kind of completeness of models and hence as caedidiar conditions characterizing models in a
unique way. The famous limitative theorems provatkerl in the 20th century showed the
possibilities and restrictions in this respect.

Early Carnap’s views on extremal axioms and metalage best described in several papers
written by Georg Schiemer (see for instance [24}).book [19] presents logical, mathematical and
cognitive aspects of extremal axioms. In particulgsropose to extend the inventory of extremal
axioms by taking into account Kurt Godel's axiomcohtructibility, John von Neumann’s axiom of
the limitation of size and Roman Suszko’s axiontamonicity (these are examples of restriction
axioms in set theory, hence axioms of minimalitg) veell as axioms of the existence of large
cardinals in set theory (which are axioms of madityla | also mention an interesting example of a
maximality axiom in algebra, namely a generalizaidd Dedekind’s axiom of continuity proposed
by Philip Ehrlich and used by him to prove categtyi results concerning certain non-
Archimedean structures.

Hilbert's axiom of completeness in geometry presénn [13] was later replaced by the
axiom of continuity for real numbers which resultadhong others, in the proof of categoricity of
the system of Euclidean geometry (see for exam®]e Becond-order axiom of induction in
arithmetic is used in the proof that there exis@cdy one (up to isomorphism) Peano algebra. On
the other hand, first-order Peano arithmetic idi@am being semantically complete (and hence also
categorical).

It is interesting that mathematicians have chantped views on extremal axioms in set
theory. The axioms of restriction were abandonedicivwas most explicitly shown in [10]. Set
theoreticians are recently eager to investigaters¢é\axioms of the existence of large cardinals
which presuppose that the universe of all setsldhioe as large as possible. Kurt Godel himself
opted for this trend and Ernst Zermelo proposeddrept the existence of the whole transfinite
hierarchy of strongly inaccessible numbers alreadyis second axiomatization of set theory
presented in [26].

4. Jan Wolenski on Intended and Standard Models

Jan Wol@ski devoted several works to metatheoretical amalgé formalized theories. In my
opinion, most interesting are his proposals invajviapplications of concepts elaborated in
metalogic to the analysis in question. It is justfto claim that Jan Walski achieved perfection
in this work. He may doubtlessly be consideredi¢aeing continuator of the famous Warsaw-Lviv
school.

We shall analyze in brief Waieki’'s views on intended and standard models. Ounma
source is his book on epistemology [25]. Many Polghilosophers wrote on intended models
(notably Marian Przetki, Adam Nowaczyk, Ryszard Wojcicki, and Adam Qesp but their
analysis was focused mainly on intended modelsrgdiecal theories. Jan Walski’s reflections,
in turn, are devoted mainly to intended and stashdaodels of mathematical theories which is also
the main issue discussed in this note.

Jan Woléski influenced my own views on intended and statidaodels mainly with
respect to the opinion that these models are disished not on purely syntactic or semantic
criteria but rather by taking into account alsotaer pragmatic factors. There may be small
differences between his understanding of the distin between intended and standard models and
the one presented at the beginning of this notethigy are negligible.

Wolenski recalls the construction of the tree of extensiof first-order Peano arithmetic PA
([25], 256; [18], 161). Le=PA and lety, be any undecidable statemenfTga We put:Too= PA
+ wo andTp; = PA+ =y For any finite 0-1 sequenedet: T,o = T, + w, andT,1 = T, + —y,,
wherey, is any undecidable sentence ©f (for anyT, there exists such an undecidable sentence).
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We obtain in this way the full binary tree of exdeams of PA. This tree has continuum many
branches. It follows from the compactness theorea the union of theories from each branch is
consistent (under the assumption of consistencyP8) and hence each such union has a model.
Further, due to the downward Léwenheim-Skolem teoeach such union has a countable model.
No two such models are elementarily equivalent wiiatlows from the construction of the above
tree. Consequently, no two such models are isonmrph

Let yo be identical withCon(PA) (that is, the sentence expressing the fact thatidPA
consistent) and lat, express the consistency B©f. Then the model of the leftmost branch of the
above tree is isomorphic to the standard model Af Al other branches have countable non-
standard models. Each sentence of the fef@on(T,) has the Gédel number which is a non-
standard natural number in the respective moddl.usenote on the margins that PA isvdd
theory: it has, in each infinite power the maximum possible number of models, thaf‘is
(provided the consistency of PA, of course).

The standard countable model of PA can be distsigaad out of the totality of countable
models of this theory only using some metatheaxktresults, as already mentioned above.
However, Jan Woleski proposes a more deep and subtle analysis sfishue. We need some
auxiliary tools to present his views here:

A theory T is descriptively completdin short: o-completg with respect to a sequence
(as)ses Of individual constants (whefis any index set), if for any formulgx) of the language of
T with one free variabl& the following implication holds: i§(x/as) is a theorem of for all s € S,
then alsovxg(x) is a theorem of. If the sequence of individual constants in quests countable,
then we say that T i,-complete

A theoryT is constructivewith respect to a sequence of ter(s),cs, if for any formula
¢(X) of the language of with one free variabla the following implication holds: if3xe(x) is a
theorem ofT, theng(x/ts) is a theorem of for somes € S.

A theoryT is o-consistentvith respect to a sequence of ter(ng),cs, if for any formula
¢(X) of the language of with one free variabla the following implication holds: ifp(x/t) is a
theorem of T for alk € S, then3ax—¢@(x) is not a theorem oF. If the sequence of terms in question
is countable, then we say thiats w-consistentlf a theoryT is notw-consistent, then we say that
IS w-inconsistent

By the w-rule we understand a rule of inference with an infinget of premisses
©(0), (1), 9(2), ... and the conclusio¥xe(x).

These notions are related to the possibility obaissing names with the elements of the
domain of a modelw-consistency was used already by Kurt Gédel inftheulation of his first
incompleteness theorem. Descriptive completenesk amstructivity were used by Andrzej
Grzegorczyk in his famous paper on categoricity].[12 the language of our theory contains
numerals, then we can talk in this language abpetiBc natural numbers. There arises a question
of how these properties can be used in the chaizatien of models of a theory.

For any modeM let Th(M) denote théheory ofM, that is the set of all sentences trudin
Let No denote the standard model of PN; the non-standard model obtained by using the
compactness argument in the way described abovéNartie non-standard model of the theory
PA+ -Con(PA)obtained from the tree of expansions of PA preskrarlier. The s@th(Ny) is thus
the set of all arithmetical truths, that is truateaces about standard natural numbers. We recall
that PA is incomplete and essentially undecidabbles not finitely axiomatizable. If we add the
infinitary o-rule to PA, then the enriched theory becomes cetapbut the price for that is very
high, because we admit infinitary proofs, whicloisourse a debatable decision.

Jan Wol@ski uses an original generalization of the tradiiosquare of oppositions for a
formal representation of the logical dependencietswben the notions of consistency,
inconsistencygp-consistency, an@d-inconsistency. It should be noted that these gdizations (see
[24]) appeared to be a very productive and effectool of logical analysis as shown by Widki
in his numerous articles on analytical philosopie are interested here mainly in possibilities of
applying the notions in question to the characéion of intended and standard models.
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All axioms and theorems of PA are true in the maddlgl However, the sentenee€Con(PA)
is also true ifNj,. The Godel number of this sentence cannot beraatd natural number because
otherwise PA would prove its own inconsistency, tcamy to what was assumed. The sentence
-Con(PA) is obviously false in the standard modi&l and Woléski writes that it is difficult to
express its sense in the language appropriateafking aboutNy. If we are looking for formal
criteria of being the standard model of arithmetien a good candidate could be the well-ordering
property of the set of natural numbers. Wisla shares this opinion with Haim Gaifman (see J11]

The set Th(No) of all standard arithmetical truths is-consistent, ®-complete and
constructive with respect to the sequence of athenals. Woléski argues that o-consistency and
constructivity are too strong conditions for theuccterization of an arbitrary set of true sentsnce
For example, the séth(Ni,) is consistent bub-inconsistent. It cannot be constructive, because
consistency and constructivity imply-consistency. Further, Walski adds that it is possible to
consider the sefh(N.) as o-consistent and constructive with respectdaitably chosen sequence
of constants. Themh(N) is also o-complete. Walski concludes from this that consistency (even
maximal consistency) and o-completeness are mirsgrahctic conditions characterizing the set of
sentences true in any model and that the existehtteeories which are consistent but at the same
time w-inconsistent clearly shows that truth differs esisdly from provability. The semantic
theory of truth alone is unable to distinguish skendard model in the class of all models.

Wolenski says a few words explicating the commonly ata@@ssumption that PA is (a
formal representation) of the True Arithmetic. Frtme point of view of a mathematician this could
mean that the True Arithmetic is simply the totabf all logical consequences of the axioms of PA,
even if not all of them have real applications. fkmev position (taken by a logician, according to
Wolenski) could accept the sefh(Np) as the True Arithmetic, thus identifying it withl a
arithmetical truths. Non-standard models of arithcnean nevertheless be fundamental in certain
mathematical disciplines — a notable example ipeerreal field which has become recently more
and more important in mathematical analysis.

Wolenski expresses a few interesting remarks concerthegways of formalization of
arithmetic. The class of models isomorphidpcan be characterized in second-order logic ard thi
fact is considered a virtue of such formalizati@irst of all by the professional mathematicians.
However, second-order arithmetic is undecidable iandmplete. The great expressive power of
second-order logic is related to the acceptant¢keofbsolute notion of a set. The expressive power
of a logic is inversely proportional to its dedwetipower. Jan Woreski explicitly opts for first-
order formalization, which possesses a lot of ‘gatatiuctive properties and adds that this choice
does not have any influence on the criteria ofddiatiness of models.

The monograph [25] contains a very detailed anslggithe notion of aanalytic sentence
One type of such sentences is relevant to standadkls. Woléski proposes to call a sentenge
analytical in the pragmatic sensk there exists a theory such thaty is a theorem of andy is
true in the intended model @t From the formal (logical) point of view standartbdels are as
good as non-standard ones. It is our epistemicibecto call a model standard. We have argued in
the first part of this note that this decision istafmined by reflecting on the properties of the
intended model, a structure investigated prioheogmergence of the formal (axiomatic) theory.

The monograph in question contains also a critigu®utnam’s arguments expressed in
[20]. Jan Woléski shows that Putnam is wrong claiming that modmie nothing else but
constructions inside theories. Putnam assumeswvinaéfer to models (in particular to the intended
model) always using the tools of the correspondiepry. This is clearly false, writes Wakki,
because we must refer to metatheory when distihgngsbetween models. This is obvious for
instance in the explication of Skolem's paradoxha context of models of the theory of real
numbers. We switch to metatheory asserting thaptbper (adequate) model of this theory has a
power of continuum. The impossibility of definitioof models in the object language, which
follows from metalogical results, is discussed iorendetail in [23].
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5. Concluding Remarks

The main goal of this note was to present Jan Yé&lés views on intended and standard models of
mathematical theories. His contribution to thisuessis based on an original application of
metalogical results to philosophical problems. Quram hardly find in philosophical literature
examples of formal analysis comparable in depth sardlety to those provided by Jan Widki.

My own distinction between intended and standardlet®owas influenced by his proposals. In a
sense, the distinction in question slightly resaslthe distinction between the intuitive notioraof
computable function and any precise mathematigalesentation of computability (for instance
recursive functions or Turing machines).

Wolenski’'s remarks are related first of all to modelsaothmetic and to a lesser extent to
geometric continuum and set theory. Taking intooaat the history of mathematics on a large
timeline it seems legitimate to say that the inezhdhodel of arithmetic is much better understood
than the continuum. The long philosophical debéteuathe structure of a continuum is still vivid
and far from ultimate conclusions. The most commadcepted representation of the geometric
continuum by the arithmetical continuum of real fmems competes with the quite new
representation based on hyperreal numbers. Onalsarfind the opinion that the continuum should
not be considered as a set of points, though nbdegkloped mathematically correct alternative is
in sight at the present moment. This situation m@ympt us to the conclusion that mathematicians
have described several aspects of the continuunmdozg not capturethe intended model of the
continuum yet. A very interesting recent reviewopinions on the structure of the continuum can
be found in [2]. The discussion concerning modélseb theory is also far from being closed as is
clearly visible from the research directed towangsv axioms which could characterize the set-
theoretical universe in a more unique way.
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Abstract

In this article | want to continue the charactéstof philosophical methods
specific to analytical philosophy, which were and amportant for Professor
Jan Woldéski. So | refer to his work on the methods of ahedy philosophy,
but | also point out a few new methods that havavgrup in the climate of
studies of philosophers, especially analytical tmgists. | will therefore
describe the following methods: generalization,cgdzation, formalization,
de-formalization and topological hermeneutics.dadtof the term “method” |
use interchangeably the terms “operation” or “pdage”. | will show that each
of these operations makes an important contribution ontological
investigations, and, in particular, to formal ooty.

Keywords methods of philosophy, generalization, speciébra
formalization,  de-formalization, logical hermenesti topological
hermeneutics, topological ontology, formal ontolpdgn Woléski.

1. Methods, Procedures, Rules, Operations

In this paper | refer to the work of Jan Ws&i entitled “Kierunki i metody filozofii analityazej”
(Directions and methods of analytical philosophyd an particular to its second part entitled
“Methods of analytical philosophy”. It discussesr® methods characteristic for the analytical
practice of philosophy, namely methods of: a) lajmonstructions (Russell, descriptive theory), b)
explication (Carnap), c) paraphrases (Ajdukiewiad), presuposition (Strawson, Hart) and e)
paradigm-case argument (Urmson, Hart) [25]. Of seuProfessor Walski has taken up the
subject of methods in philosophy many times (co2§j pnd [27]).

I will not discuss the methods indicated abovesash a description has been made many
times [4], [7], [21], [25], [29]. On the other hanidwant to focus on newer methods or procedures
of analytical philosophy, i.e. logical hermeneutarsd topological hermeneutics, and | will try to
show that some of the procedures considered witlenphenomenological method are important
for the analytical study of philosophical problermierefore | will present below:

(a) specialization and generalization operations,
(b) Husserl formalization and de-formalization agpems,
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c) my own proposal, which | called topological hemautics and which | see as a complement to
Wolniewicz’s logical hermeneutics.

These methods will be partly confronted with thethod of explication, paraphrases and logical
constructions.

1.1.Note on Method, Procedure and Operation — Ambiguiithhese Terms and/or Concepts

In many works we find descriptions of particulailpsophical methods. Let us ask ourselves: what
is a philosophical method? The answer is not ebsgause when we look, for example, at the
proposals of phenomenologists, one talks abouptiemomenological method or methods, but also
points to some special techniques (procedures,atipes) such as eidetic reductioepoche
variation or formalisation. It is similar in theafmework of analytical philosophy, where the
analytical method is talked about (aimed — follogviBochéski — at language, analysis and logic),
but also indicates some specific procedures su€taazap’s explication or Russell’s descriptions.

Therefore, | propose that the method should be nstmted, in a working way, as a set of
procedures characteristic of a given philosophdiedction. A method understood in this way is
then a set of detailed procedures, which | proposeall also tools or operations. Thus, for
example, a phenomenological method is a specifig @fareasoning and conducting research, in
which we use (tools, operations) eidetic reductiparenthesizing, variation, formalization, de-
formalization, specialization and generalizatiorerfaps not everything yet). In turn, in the
analytical method, i.e. the one characteristichaf analytical philosophy of the 20th century, we
will encounter such tools and operations as: apgptio of some logic (e.g. classic, temporal Scott’s
logic, modal S5, etc.), axiomatization (cf. Wolniewis axioms for the lattice of the situations),
development or use of the logical square, formatagch to definite descriptions and many others.
Interestingly, both the phenomenological method #nredanalytical one can be characterized in a
general way emphasizing their main “attitude”. Egample, Bocheski characterizes the analytical
philosophy itself through keywords: language, asiglylogic and objectivity. From this we can
conclude that the analytical method is charactdrizg: a) a turn to language and analysis of
language, b) analysis of language using methottsyaf, ¢) an attempt at objective analysis of what
is on the side of reality and what can be exprefiagdistically. Similarly, we can formulate basic
axioms (or keywords) of phenomenology. Let us psepotherefore, at least the following
postulates: a) turning towards the investigationttohgs, b) extracting what is essential (i.e.,
connected with the essence of the investigated)tht) capturing what appears to our “self” as
unreduced and free from any theoretical assumptions

The brief proposal presented here may seem uimastbut let us note that we find a similar
approach in the book Boadheki [4]. Bochéski justifies that in contemporary philosophy weane
four basic methods [4, p. 14]:

1. the phenomenological method,
2. the language analysis,
3. the deductive method,
4. the reductive method.

In turn, in the book itself, Bocliski discusses in the following chapters the methbds
correspond to the above, but are called respegtithe phenomenological method, semiotic
methods, the axiomatic method and reductive meth@és have here some minor inaccuracies,
because in the end we can ask: do we have a reductethod or rather (different) reductive
methods; is language analysis the same as semnetltods, etc.? From the text we learn, however,
that Bochaski leans towards talking about the method as aifspetyle of conducting research
that is most often appropriate for a given phildsoal trend, while the terms procedure or
operation should be used for more detailed toots. éxample, eidetic reduction epocheare
called by Bocha&ski procedures, although he also uses the name&’‘fful pp. 18-19].

The above mentioned demands do not aspire to bsfhation. | just want to point out that
the above problems call for a reliable and methagio&l reflection on philosophical methods and
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their detailed procedures (which | allowed myseltall also tools or operations). Therefore, intPar
Il we will give relevant examples of both analytiead phenomenological work.

1.2. Validation/Justification of Philosophical Meits

When Ajdukiewicz was proposing his method of paraphs, he noticed that it should be justified,
validated. | think that the problem of justificaticconcerns every method, including any other
presented in this work or discussed by Wisle, Bochéski, Stegmueller. Let us therefore look at
the problem of validation in Ajdukiewicz’s view. the articleOn the Applicability of Pure Logic to
Philosophical Problem&rom 1934 he writes:

The apparent use of logic in solving philosophipabblems formulated in natural
language does not consist, therefore, in the dedudrom logical theorems by
legitimate substitution of conclusions which coodte to the solution of those
problems. The procedure which has all the appeasant such application in fact
consists in the construction in a natural languafesentences whose structure is
isomorphic with the structure of logical theorems, in paraphrasing logical sentences
into sentences with variables ranging over diffedmains of substitution than logical
variables. It is only from such paraphrases tha¢ omay derive by substitution
consequences relevant to philosphical problemsutaiad in a natural language. There
is no doubt that the construction of such a sysiésentences is desirable, for it would
constitute the logic of ordinary language. Howevbose sentences, as paraphrases of
universal logical sentences, require a validatidmctv the existing contemporary logic
is unable to supply.

They could be validated as analytic sentences ¢ffroa meaning analysis of the
expressions of ordinary language. In the searchthisr validation one might use the
phenomenological method. Alternatively, they cobéljustified by elevating them to
the rank of postulates which — disregarding themmgg expressions have in ordinary
language — would fix those meanings arbitrarily.isTilsecond method is more
promising, it seems, than the phenomenologicaldmnieh should be tried nevertheless.
One must not forget, however, that if the secondhef two methods is used the
expressions of the language may acquire meaningsradit from those they had
previously. Hence the same verbal formulations migit express the same problems.
However, this need not necessarily be regrettaple 93, The Scientific World
Perspective).

Ajdukiewicz, as we can see, points to two pathglifea to the validity of sentences being
paraphrases of generalised logical sentences.iiehe is to consist in the meaning analysis of
sentences-paraphrases and treating them as aahlgénatences. Then — in his opinion — the
phenomenological method could be helpful. The sesoould consist in treating these sentences as
postulates. Ajdukiewicz does not explain in dewdiat the application of the phenomenological
method is to consist in. We can only guess thatskllis analyses of expressions, meanings, senses,
sentences, judgments proposedagical Investigationshould be used. On the other hand, treating
sentences (paraphrases) as postulates result® inndmbiguity of terms but at the same time
introduces arbitrary meanings that do not have dmaide with the meanings of expressions
occurring in philosophical problems.

It is interesting that Bocliski also mentions the need to authorise (validtte)method.
Bocheski directly writes about the justification of tiphenomenological method, the justification
of language analysis and the justification of foliema. | conclude from this that each method, and
perhaps also the individual procedures of a givesthod, must make sure to reflect on their
justification. For example, according to Bodhki, justification for formalism can be found in a)
possibilities (thanks to formalism) of going beyontat is intuitively obvious, b) clear separation
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and explanation of concepts, c) elimination of leiddassumptions, and finally d) possibilities of
different interpretation of what is formal and uexisal [4, pp. 40-41].

2. Husser| and Analytical Tools

Husserl, the founder of phenomenology, develops ws®s the phenomenological method in his
studies. In the initial pages of his Ideas |, hogreshe draws attention to some detailed tools
(operations, procedures, rules), which are useshould be used by an ontologist (because here, in
paragraphs 7 — 17, it is not so much about phenology as it is, above all, about formal ontology
and regional ontologies). These tools are: spsai@tin, generalisation, formalisation and de-
formalisation. Let us look at them and show thalthre also tools used by analytical philosophers.
| personally use them when | conduct ontologicaéesch.

Phenomenology is for Husserl a field of analysr®aigh which one prepares the ground for
particular sciences and philosophical problemss&hanalyses are aimed at examining the essence
of various objects and the pure form of the objeajeneral. The ontologist does the same — let us
underline this — as well. Husserl writes about thibject in this way [8, p. 19] of the original
edition:

Any concrete empirical objectivity finds its plagathin a highestmaterial genus, a
“region,” of empirical objects. To the pure regibeasence, then, there corresponds a
regional eidetic sciencer, as we can also say, ,a regional ontologyhi ¢onnection
we assume that the regional essence, or the diffgemnera composing it, are the basis
for such abundant and highly ramified cognitionatthvith respect to their systematic
explication, it is indeed worth speaking of a sceror of a whole complex of
ontological disciplines corresponding to the simgg@eric components of the region.

And then on [8, p. 19]:

Any science of matters of fa(any experiential sciencd)as essential theoretical
foundations in eidetic ontologieBor (in case the assumption made is correct)quite
obvious that the abundant stock of cognitions irggatn a pure, arunconditionally
valid manner to all possible objects of the regioim so far as these cognitions belong
partly to the empty form of any objectivity whatewand partly to the regional Eidos
which, as it where, exhibitsr@ecessary material formof all the objects in the region —
cannot lack significance for the exploration of émcpl facts.

Therefore, when we consider the operations of iiansto species or genera (specialisation and
generalisation), we are in the field of properlylened essences — from the highest to the lowest
genus. Again, let us give the floor to Husserl relhf8, p. 25].

We now need a new group of categorial distinctipegaining to the whole sphere of
essences. Each essence, whether materially fitleshtpty (thus, purely logical), has its
place in a hierarchy of essences, in a hierarclgenéralityandspecificity This series
necessarily has two limits which never coincides@mnding, we arrive at thefimae
speciesor, as we also say, tledetic singularitiesascending through the specific and
generic essences, we arrive dtighest genusEidetic singularities are essences which
necessarily have over them “more universal” essenasetheir genera, but do not have
under them any particularizations in relation tbick they would themselves be
species (either proximate species or mediate, higiemera). In like fashion, that genus
is the highest which has no genus over it.
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Let us now present a concrete example of hieraattiiiordered essences. Referring to the studies
of philosophers, we can indicate the well-knowngPgry tree érbor porphyriana [10, 23].

Substance

N

immaterial material

N

inanimate animate

N

insensitive  sensitive

/N

ational rational

Let's also establish that:

(@) the substance (as a universal) is charactefiseds content (ideal quality, in Ingarden
terminology): “being a substance”,

(b) material substance by: being a substance and bwterial (I omit quotation marks),

(c) immaterial substance by: being a substancegheimaterial, example: angel,

(d) sensitive substance by: being a substanceg Ioeaterial, being sensual,

(e) rational substance by: being a substance, lmeatgrial, being sensual and being rational.

| skip the description of the other objects, beeaitiss easy to guess. Furthermore, let us
notice that an irrational substance could be rggldzy many other “objects” such as “equines”,
“elephants”, etc. For example, in zoology, a hasseharacterized as: multicellular, vertebrate,
mammal, and odd-toed (in short); let us treat ibagng the following content: being a substance,
being material, being sensual, being odd-toed.

Next, the particular names in the Porphyry treeukhde treated as names for so-called
universal objects. If there are some dashes doam & certain inscription, this inscription is the
name of the genus, and if there is nothing undénndais is the name for the species. Thus, when
Husserl speaks of the lowest varieties of univesbgcts, he indicates the species (not the genera)
So if a human being (a rational substance) is aispeor the lowest kind, then there is no such
thing as a species or essence: male, female, @sselr or philosopher. Species (but also genera) are
sometimes called essences by Husserl (the Greek d@&los is sometimes translated as idea,
sometimes as essence). Specialisation is the tianéiom a genus (e.g. animate substance) to a
lower genus or species (e.g. to a sensitive subtstan immediately to a rational substance).
Generalisation goes in the opposite direction (Ban a human being to an animate or material
substance).

Things are obvious when we have a tree. But howvel@et it? Let us notice that also the
above tree can “miss” essences, although the plplosal tradition convinces us that e.g.
“animality and rationality” is the essence of matuologists and philosophers build different
“systematics” of animals, plants and man (one efdhimals). The aim of Husserl is therefore to
bring out what is the essence of what is alive, twhahe essence of man, and so on. In his Ideas
(that is, in Volume II) he gives, among other tlangn answer that can be given briefly as follows:
the essence of an organic substance is: being staside and being alive (of course, we could
discuss both at length). What is more, | woula dike to stress that the transition from a certain
kind, to a kind that is directly inferior (e.g. frowhat is animate to what is sensitive) does neeha
to be made by indicating a single content. Contéisging sensitive” or “being reasonable” are
usually very complex contents.

144



Ingarden understood these species and general(bé tteem, in general, ideas) as follows
(I will give it by example and in a formalized way)n the material substance as such we have
certain contents, let there be five of them, fr@nto us, which together define what is substantiality
(being a substance). Furthermore, we have, ledyisfeur contents, let us mark them with the letter
w in the appropriate indexes, which characterizetwie briefly express as “materiality”. This is
not all, because in such an idea there are stitcerding to Ingarden — some variables, i.e. other
contents, but not yet defined, and which concemgawicity (the lettersx), sensuality \) or
rationality ). If we define the letterx in the appropriate indexes negatively, we obtain an
inorganic material substance, an example of wrscktone, while if we define the lettetsandy
positively, we obtain the idea of material substanarganic and sensual. However, a problem
arises: can we talk about a material, inorganic sertsitive substance? Is there such an idea, such
an essence? Well, here is the biggest problemtligaphilosopher is trying to solve. Husserl’s
answer, and Hartmann in particular later, goeshis tirection to discover that “there is no
sensuality without organicity”. It is true that Thhas Aquinas taught about angels, which were
immaterial and rational substances, but in our veailld, rational beings (man) are only those
which by necessity must also be: material, organid sensitive (let us note that Kant has already
taught that all cognition begins with intuition,tivisensuality), so without senses there would be no
reason, and without organic there would be no sense

After these explanations, it is clear that spezadion is the transition from a higher order
essence to a lower order essence. But: not blindibt! everything is an essence, not every filling
with the contents of a higher essence hits a |dwed of essence. For example, there is no such
thing as a material, inanimate, insensitive anébmat substance Generalization in turn is the
reverse process. But also here we can see that tdke the essence of the human being, we cannot
make any content variable (inverse to filling itthvicontent), e.g. (the answer is partly in the
language of science) we cannot move from the iddheohuman being to the idea of something
that does not have a nervous system or is nottabrate, although it remains (sic!) reasonable.

Remark. The Porphyry tree is a good example okiflaation or so-called logical partition.
The classification assures us that by distingugghaertain subgenera, we distinguish those
subgenera whose subordinate individuals are aiVichaals of a given type, and those subgenera
are such that the subordinate individuals do natukaneously fall under other subgenera.
However, the following problem arises: when we idgish in a kind of polygon such as the
regular and non regular polygon or the concave amyex polygon, which of these partitions is
appropriate? Which of these partitions “hits” thesence? Of course, mathematicians are not
interested in such problems today. It is a philbsogd problem. A mathematician is interested in
concepts (or mathematical structures and objegtshilosopher is interested in essences.

Let us now move on to the next pair of operatidiesmalization and de-formalization.
These are operations different from the speciatisand generalisation operations just discussed.
In the Paragraph 1Generalization and FormalizatioHusserl explicitly states [8, p. 26]:

One must sharply distinguish the relationships mgloy to generalization an
specialization from the essentially heterogeneeletionships belonging, on one hand,
to theuniversalization of something materially filled time sense of pure logand, on
the other hand, to the converse: thaterializationof something logically formal. In
other words: generalization is something totallfedent from thaformalizationwhich
plays such a large role in, e.g., mathematicalyasisgl and specialization is something
totally different fromde-formalization from “filling out” an empty logico-mathematical
form or a formal truth.

Husserl explains these difficult operations (forretion and de-formalization) by analysing
examples from the field of mathematics (geometng) the sphere of sensual quality [8, p. 26].
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Accordingly, the subordinating of @assencé¢o the formal universality of pure-logical
essence must not be mistaken for the subordinafiag essence to its higher essential
genera Thus, e.qg., the essence, triangle, is subordilmatke summum genus, Spatial
Shape; and the essence, red, to the summum geensudais Quality. On the other
hand, red, triangle, and similarly all other esssncwhether homogeneous or
heterogeneous, are subordinate to the categorealig “essence” which, with respect
to all of them, by no means has the charactedtén essential genus; it rather does
have that characteristic relative any of them. To regard “essence” as the genus of
materially filled essences would be just as wrosigoamisinterpret any object whatever
(the empty Something) as the genus with respeobjects of all sorts and, therefore,
naturally as simply the one and only summum gethes,genus of all genera. On the
contrary, all the categories of formal ontology muse designated as eidetic
singularities that have their summum genus in g$selrce, “any category whatever of
formal ontology.”

Apart from explaining what formalizing and de-foriming is, Husserl points out the differences of
the above operations in relation to the operatadrgeneralization and specialization. Nevertheless,
let us give some more examples from philosophietds.

1) In the Porphyry tree, we have indicated spedaifaterially defined essences. Ingarden, as
| wrote above, understands them properly. Note ¢hah essence has a certain amount of content
that has appeared at a higher level and a newf seintent that appears as a filling of the higher
level. The latter set is that which in scholastiosresponds to the species difference, the former t
the directly superior genus. Well, we can say Wian we consider an essence (universal object) as
an empty thing, we are not interested in mateeiahs, but only in the pure form of the essence, in
which we discover the “generic part” and the “spedifference part”. This is formalization!

2) Let us consider the following reasoning (argutagon):

(A) If the cube of sugar is placed in boiling watiren the cube will dissolve

And

The cube was placed in boiling water,
Thus

The cube will dissolve,

This is an example of some detailed (material) oegrg. But when the logician comes to the
conclusion that the general scheme of this inferémn@ formula

(*) ((a - B)Ta) - B,

we have an example of formalization. Of course,fthmula (*) is not any genus (kind) in relation
to reasoning (A). Husserl explains it as followsgpf. 26-27]:

It is clear, similarly, that Any determinate inface, e.g., one ancillary to physics, is a
singularization of a determinate purely logicalnfioof inference, that any determinate
proposition in physics is a singularization of agsitional form, and the like. The pure
forms, however, are not genera relatively to thetenwlly filled propositions or
inferences, but are themselves only infimae speameasnely of the purely logical
genera, proposition, inference, which, like all édmgenera, have as their absolutely
highest genus “any signification whatever”.
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3) In the monograph [11] | recalled Wolff's views deing. For Wolff, being is what is non-
contradictory, what is possible. Every being ised®ined by the essential, attributive and
contingent features (properties). It is usuallytestain the philosophical literature that organigcity
animality or rationality are examples of essergiadlities. Then the attributes will be the abilidy
use language or create knowledge, while the coatihfipatures will include being a philosopher or
having two children. However, when we point to sdeatures of particular entities or classes of
entities, then we are in the area of material, argji ontology. An important result of Wolff's
ontology, however, is that he formalized the comadpbeing. How did he do this? He did it by
indicating three classes of properties and establismutual relations between them. For example,
essential properties are independent of each dadttelqutive properties are generated by essential
properties, while contingent features are thosedhainconsistent with essential properties. These
relationships and their properties apply to eacherrd domain and are independent of each
domain. Therefore Wolff gave a formal approach émb, and the transition from these and these
material domains (e.g., from animal existence)h formal approach of being is a formalization
(compare details of this analysis in [11, pp. 40-&3d [28]). In turn, the transition from a formal
approach of being to an animal or human being, lwlgaot easy and is done as a result of proper
filling with content, is what Husserl calls a de+fwalization operation.

3. Topological Her meneutics

In this chapter | would like to draw attention hettopological ontology that has been developing in
recent years and its method, which | call topolagleermeneutics. Topological ontology (in short
topoontology) as a fragment of topological phildspgs an analysis of ontological concepts,
assumptions, theorems and problems using concatements and tools of general topology. This
kind of analysis has been undertaken in the worfk&ormann [17], Schulte and Cory [19],
Skowron [20], [22], and Kaczmarek [13], [14], [1%)hat is topoontology and what is topological
hermeneutics? | will explain this, | hope, mordyfw/hen | present particular ontological solutions
using general topology tools.

| compare the study of ontology problems using logical tools with the studies of
Wolniewicz, who presented a precise interpretabbnVittgenstein’s ontology by applying the
lattice theory (comp. Wolniewicz [30] and [31]). \Athis more, Wolniewicz proposed the so-called
logical hermeneutics, which allows for the intetpt®n and comparison of certain theses of
Wittgenstein's ontology and Hume’s epistemologythe lattice theory My proposal is to use a
general topology to interpret Wittgenstein’s ongylpHume’s epistemology and Leibniz’s ontology
(monadology). It turns out that the Wolniewicz'#ilzes can be understood as lattices composed of
certain topological spaces and thus we obtain argésation of Wolniewicz’s theory. Topological
hermeneutics therefore concentrates on the fatitthmcorporates various notions and theorems of
ontology in the language of general topology and(anly) in the language of the lattice theory or
logic. In my opinion, as | will try to demonstratgjch an approach results in new and interesting
formal theorems that have ontological significan®e.let's move on to the concrete ones. | will
focus mainly on the topological interpretation ofadl fragments of Wittgenstein’s logical atomism
ontology (and Russell’'s, because they worked osetligsues together).

We will conduct our considerations on the exangdlevo lattices examined by Wolniewicz
in [30, p. 81]: the first lattice is an atomic la& with W-independent elements, the second is a non-
atomic lattice withW-independent elements.
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Figure 1. Atomistic lattice.
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Figure 2. Non-atomistic lattice.

The elements of these lattices are interpreteditaatisns: o is an empty situation) is an
impossible situation and the others are properasdns. Situations, y and z are atomic and
correspond to the Wittgenstein’s states of affairgurn,w;, w, andws are called possible worlds,
and we can interpret them as conjunction (splioacatenation) of atomic situations.

Before we move on to further considerations, feexplain three concepts: atomistic lattice,
non-atomistic lattice and W-independence of sitreti The concept of the atomic lattice — different
from the concept of the atomistic lattice — and aggt of topological space — will also help.
Definitions of these concepts can be given in pufetmal language (in the language of lattice
theory). However, we will abandon this way of defo and present these definitions in natural
language (using maximum precision).

There is a certain order < in each latticeFor example, in the Lattice from diagramxXx
wi andx < w,. The smallest elemertis called a zero of the lattice, and the largéstientA is
called a unity of the lattice. For amy(] K anda # o, the set¢, a] = { x O K: o <x < a} is called a
segment. The elemeat(different from zero) of the lattice is called atom if the segment] q] is
two-element one.

1) a latticeK is atomic iff in any intervald, a] there is an atom; as you can see, both lattices
above are atomic;

2) a latticeK is atomistic iff each element of the lattice i® thupremum of some set of
atoms; in the above examples, the first latticat@mistic and the second is not; for example, in
figure 2, elementv; is not the supremum of any set of atoms;

3) two elements, y of the latticeK are calledW-independent (Wittgenstein’s concept of
independency) iff infimum ok andy is o whereas supremum andy is different fromA; for
example, elementi y of Figure 1 are independent, buandws are dependent;

4) if X is Any set, then the paiX{( 7x) will be called topological space, whergis Any
family of subset oK iff the family fulfils the following conditions: Jathe empty sefl andX belong
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to 7k, b) any union of subsets ¥fbelongs torx and c) intersection of finite number of subsétX o
belongs toryx; an example of a topological space is a péirrk), wherery is a family of all subsets
of a setX; this space is called discrete space; another pbeait the so-called Euclidean space on a
set of real numbemR, wherery is composed of sets which are the union of anybaurrof intervals
(a, b), fora, b OR.

It turns out that the above presented latticeshmtransformed into lattices composed of
topological spaces. | then propose the followingcpdures for conversion. In Figure 1, we convert:

ointo 1,
X, y andzto (respectively) X}, { y} and {z},
w1, W, W3 we convert into X, W, { X, Z and {y, z}.

Then it is easy to see that e.g. the family of satluded inw, i.e. the family {1, {x}, {Z},
{x, Z}} together with the set, z} is a topological (discrete) space, and the appabtp lattice can
be visualized as follows:

A={xy, 2

RN

X {xz {y.z2

{X {2

Yy

W
Figure 3. Atomistic lattice with three topologicgaces.

We do the same with the lattice presented in Figurélere, however, botlv; andws are not

suprema of the selected group of atoms and thereferhave to propose that we convert to X,

yi} andws to {y,, zZ}. Then we again see that e.g. the family of setduded inw; i.e. the family

{0, {x}, {x, y1}} together with the set X, yi} constitutes a topological space. It is easy t® that

this space is not discreet.
The above procedure allows us to obtain an integegbpoontological statement. Namely,

Fact. Any atomic lattice is atomistic when it isTgmosed of discrete topologies.

In this way we received the necessary conditionefach element in the atomic lattice to be the
supremum of a certain set of atoms (in the langwdggeneral topology: that each set is the union
of a certain set of singletons). Atomicity and aistioity are, according to Wolniewicz, the key
assumptions of Wittgenstein atomism. Following Welicz, we can say that every possible
world, including our real world, according Twactatus can be interpreted as a multiplicity or total
of all atomic states of affairs that aMtdependent.

In the paper [14] | also considered non-atomitides, i.e. ones which do not meet the
condition that in any segment an atom exists. Isvarth to consider such lattices? Well,
Wittgenstein assumed that the analysis of a seateannot be carried out indefinitely, so there
must be so-called elementary sentences and comgqtleeir correlations on the side of reality,
i.e. atomic states of affairs. However, when askeolut an example of a simple sentence that refers
to an atomic state of affairs, he replied that idendt know. Nota bene ifiractatuswe will not find
such an example either. The problem is that a girs@htence of the type

‘The weather is nice’
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can be seen as a conjunction of sentences

‘It's sunny and warm.’
But then a simple sentence

‘It's warm’
we can interpret as a conjunction of sentences, say
‘It's such a such temperature and it doesn't blow’

and, theoretically, we can further analyze othempde sentences (e.g. ‘It is sunny’ we can describe
by the state of cloudiness and type of clouds)s Thakes us think that it is worthwhile to study
such lattices, in which a given situation (in taapl a certain set) can be analyzed by smaller sets,
eg A=BOC, nextC=DOEOF,andthusA=B [ D OO E O F, and so on. The use of
topological spaces allows for the interpretatiodelling) of both atomic and non-atomic theses.

In this paper | also took up another problem thas wuggested by P. Weingartner: what is
the negation of the atomic state of affairs antlagsso an atomic state of affairs? It turns ouatt tfhe
answer is the following:

a) in Wolniewicz’s lattices, the negation of anraio state of affairs may be another atomic
state of affairs or, also, a complex situation &sting of several states of affairs); let us rdter
Figure 1; elements andz are atomsws is not an atom and is the supremuny ahdz; it turns out,
however, that the infimum ofandz is the zero of the lattice, while the supremunx ahdz is the
unit of the lattice, which means thais the negation of the atoxnthe same is true for theandws;
their infimum is zero and the supremum is the ahihe lattice; conclusionw; is also the negation
of x; the negation ox is therefore both the atomic and the complex etégme

b) another result is obtained in the case of nomat lattices; in [14] | showed that there are
lattices consisting of topological spaces, in whighany situation (a set) there is no negatioit of
(complement of such a set is not a part of thec&ft Ontologically we can interpret this result as
follows: when we consider possible worlds, inclydiour real world, all situations or states of
affairs are positive. No situation is a negatiorany other. This answer is consistent with theghkes
of those ontologists who doubt the existence ohtieg states of affairs or negative situations.

4. Summary and Final Remarks

In this piece | tried to show that the methodsrwdlgtical philosophy indicated by Waiski can be
supplemented. After all, a few decades have passetiadded the methods or operations proposed
by Husserl and presented briefly the method (ol) toalled here topological hermeneutics. | hope
that Professor Woisski will agree with this proposal.

Let us try to sum up: what is topological hermdrmsuas a method or a certain tool within
an analytical method? Ontological hermeneuticoiaglso:
1) considers the problems of classical ontologg. (Bgne main theorems of logical atomism (among
others, atomicity), what is a monad (Leibniz’s dogical atomism), what are perceptions and how
they relate to the situation (Hume, Wolniewicz'gital hermeneutics)),
2) formalises the theses (but also concepts) studithe language of general topology, because, in
the case of the interpretation of logical atomigm\Wolniewicz’'s view, it turns out that this
interpretation can be generalized to study bothagheroach characteristic for Wittgenstein’s and
Russell’'s atomism and the approach opposite toiatom
3) derives formal theses concerning atomism andatomism in the language of general topology,
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4) leads to new conclusions which cannot be prawedhe basis of the theory of Wolniewicz's
lattices (cf. Fact given above); these conclusished new light on the situation ontology and
logical atomism,

5) derives formal theorems, which can be intergretetologically, but also, and we hope so, can
influence the search for mathematicians themselves.

There is one more problem that | have set myse# &sk for the future. It is about the validation
(Ajdukiewicz’s term) or justification (Bochiski’'s term) of the operations, tools, methods
discussed. In the case of justification | thinkttipaints a) — d) indicated in the final part of
Paragraph 1.2 of this paper can be accepted a$icatsdn for the topological hermeneutics
method. Perhaps we should look for more justifaradi However, in the case of Ajdukiewicz the
matter is slightly different. Ajdukiewicz tries fond a certain logical theory (a certain set ofitady
sentences) that would be the basis for philosophitams. This basis would guarantee the
validation of philosophical theorems (which areallugiven in natural language). Ajdukiewicz did
not see a solution when he was writing about it} Bwlo not see a solution today either. This
should be put as a problem. | think it is a keyope. We may ask: for which philosophical field is
it a key problem? The short answer is: for everyshe considers the results of formal sciences
(these, according to Aristotle, were a tool of pbdphy). So let it be a problem which will be dealt
with by ontologists and logicians.
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Notes

1. The Reader can find Ingarden’s investigations @asdin Ingarden [9], Chapter Il, 8 9 and also
in other chapters.
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2. This is the case, for example, according to Hartmand — probably — is confirmed by the
science of facts (to follow Husserl’s terminologilowever, as philosophers, we cannot insist on
such a position. Personally, | think that when, égample, angels are said to be immaterial and
rational, the term “rational” means something déf@ from the human being defined asmal
rationale

3. Comp. [29]. Wolniewicz writes in the abstract of Ipaper: “Rules and evaluation criteria for the
interpretation of philosophical systems are callemmeneutics. The logical interpretation of a
system is aimed at revealing its logical structute. hermeneutical value depends on several
parameters: range, coherence, naturalness, additassumptions, and concordance with other
systems. For illustration purposes, significangiants of two known metaphysical systems were
interpreted in this way: Hume and Wittgenstein.”

4. Formal details and a discussion of these issuesheafound in [14, pp. 412-414], while the
definition of a lattice composed of topological sggcan be found on p. 405.
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Abstract

The Euclidean ideal of mathematics as well ashalfoundational schools in
the philosophy of mathematics have been contesyethéd new approach,
called the “maverick” trend in the philosophy of thiematics. Several points
made by its main representatives are mentionedom fthe revisability of
actual proofs to the stress on real mathematicattipe as opposed to its
idealized reconstruction. Main features of realofsocare then mentioned; for
example, whether they are convincing, understaedadd/or explanatory.
Therefore, the new approach questions Hilbert’ssiheccording to which a
correct mathematical proof is in principle redueibb a formal proof, based on
explicit axioms and logic.

Keywords mathematical proof, axiomatic proof, formal prophilosophy of
mathematics, foundations of mathematics, mathealgbiactice, explanatory
proof, analytic proof, Hilbert’s thesis.

1. Historical Background: from Euclid to Hilbert

For centuries mathematical proofs have been segpedal, different from any other kind of
argument. Mathematicians and all educated Westeroeuld point to their exceptional traits:
proofs in mathematics seem more precise, more ihhomore compelling, more certain, more
logical than any other proof-like discourse — socmmore that they can be seen as absolute. A
crucial evidence has been provided by the Euclidge@ammatic system of geometry. This book was
taught to all who were able to follow mathematicl aserved as a paradigm of mathematical
argument. Euclid’'s system was seen as completegedmetrical theorems were supposedly
reducible to the initial general “common notiongidaspecific postulates. As late as thé"19
century, it turned out that some implicit assummpdiovere used and that a more complete treatment
was needed in order to achieve the goal of halnagystem of geometry that is purely logical and
does not depend on intuitive visualization. Thiswassible due to the work of Moritz Pasch and
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David Hilbert. In addition, the development of nBaelidean geometries showed the limitations of
the intuitive methods and the need for rigor. All these developments did not diminish the
influence of the Euclidean ideal of axiomatic matla¢ics. Rather, they seemed to confirm the view
that mathematics consists, at least ideally, obrasitic theories that can be presented in a very
rigorous way, making explicit all assumptions.

One element of the contemporary version of theragitc method has been different from
the approach of Euclid: rather than defining disette objects of the theory (for example, points
and lines) the objects were indirectly defined by axioms that expressed the main properties of
the objects and, even more important, basic relatioetween the objectdlothing more was
assumed than what was stated by the axioms. Heiltlwert$ famous remark that the objects of his
system of geometry can be anything, for instanablés, chairs, and beer mugs,” as long as they
satisfy all the axioms. This approach made possibleew variant of the axiomatic method; it
slowly emerged in the ocentury. Namely, arbitrary axioms can be propasetitheir realizations
studied. Hence the notion of a group and othectiras studied in abstract algebra. How they can
be applied to the world is another matter. Pureheragaticians may disregard it. In practice,
however, axioms were never completely arbitraryheg they conveniently codified regularities
observed in the world of mathematical objects. ¥et idea that axiomatic theories can have
multiple realizations became a new norm. In th& 2éntury the theory of models emerged, or a
study of possible theories and their various irggions.

In order to have a strict mathematical theory ofdeis it was necessary to have a full
description of the logical machinery utilized tope theorems form axioms. This was possible due
to the work of Frege and later proponents of l@gici Hilbert was happy that as if in result of “a
preestablished harmony” logic itself was axiomatizthe so-called first order logic was identified
as basic.

In addition, due mainly to Georg Cantor, actualifinite sets were introduced as an object
of study in mathematics. The general concept ottawss also necessary in order to develop
systems of higher order logics that reflected meashieaturally used by mathematicians. To make
clear what properties of sets may be used so thatam avoid antinomies that were plaguing the
early research dealing with infinite sets, Zermakiomatized set theory. Since then, in the early
20" century, it was developed by Fraenkel and otherthat the ZF (or ZFC, that is, ZF with the
axiom of choice added) system emerged that has been as an adequate basis for abstract
mathematics. Interestingly, the axiomatization eif theory was made in the spirit of Euclid: the
principal properties of the intuitive concept ofet were listed so that all other properties ofrépu
sets” could be logically derived.

As a result of all those well-known developmentsnse hundred years ago it became widely
agreed that the axiomatic method could be seemm@sative. Its strengthening, namely the notion
of a formalized theory, became the ideal of mathealatheory, especially for those who assumed
that the right approach to mathematics must bergled in logic. A formalized theory is axiomatic,
the axioms are expressed in a perfectly defineduage, its underlying logic is axiomatized, and
the meanings are assumed to be grasped by alldkesas together with formal rules of derivation
of formulas from other formulas. This picture okethxiomatic approach and its refinement, the
notion of formal theories, has been highly sucedssid extremely influential among philosophers.
For some analytic philosophers this picture becanmodel of scientific and even philosophical
analysis.

The notion of axiomatic mathematics involved anarsthnding of mathematical proof. Its
essence was seen in Hilbert's concept of formabipibis a sequence of formulas of the underlying
formal language, each of the terms of the sequéeneg either an axiom or the result of an
application of one of the explicitly listed formaliles of inference to previous terms of the
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sequence. There are variants of these notiongxtmmple the sequent calculus, and extensions, for
example rules with infinitely many premises, bug theneral idea remains: proofs are essentially
derivations, very much like calculations. While gl@dy knows that real proofs are very different
from this ideal the supposition was that they armanly available indications of ideal proofs. The
underlying assumption, then, called sometimes IHikb& hesis or the Frege-Hilbert Thesis, is as
follows:

Every real mathematical proof can be converted anformal proof in the appropriate
axiomatic theory.

This attractive hypothesis has been, however, tegjedy more and more philosophers of
mathematics since at least the 1960s.

2. Movement Against the Euclidean Notion of Proof

Probably most mathematicians do not really carethdrereal proofs can be converted to formal
proofs or not. They may believe those colleagues sdy that this is the case, but they know well
that this has nothing to do with their practice pbving mathematical results. Many would
probably express doubts as to whether the fornmaifps really always possible, even in principle.
It is hard for me to say how many would, since \éhaot heard about representative studies on the
issue conducted among professional mathematicians.

Whatever the opinions regarding Hilbert’'s Thesisoaghthose who produce proofs, an
increasing number of philosophers of mathematicd arathematicians reflecting upon their
profession have begun to analyze mathematical prasfthey really are. This is a part of a more
general turn in the philosophy of mathematics. Thange began with the analysis of proofs of
Euler’s formula for polyhedral, V-E+F=2, made bhaititly by Imre Lakatos in the 1960s. Among
others who contributed to the new trend let me manPhilip Kitcher, Reuben Hersh, Paolo
Mancosu, Yehuda Rav, Carlo Cellucci, Brendan Laridavid Corfield, and Brian Rotman. Their
positions on many issues in the philosophy of nrattes differ, but all tend to deny the possibility
of, and the need for, foundations of mathematibst is, the idea of reducing the whole of
mathematics to one theory, treated as its foundafibis new attitude is sometimes called, after
Aspray and Kitcher [1, p. 17], “the maverick” tradn. It is opposed to the traditional philosophica
schools of the foundations of mathematics: logicisimrmalism, constructivism (including
intuitionism). Some representatives of the new apgin are playing down the role of logic. Many
want to understand mathematics as a part of humléure. Most of them doubt, to varying degrees,
the adequacy of realism in the philosophy of maties. All want to begin with genuine
mathematical practice.

It will be useful to mention briefly some of the mapoints made in their works, especially
those that are relevant to the analysis of prdofsll summarize some views of a few of the above-
mentioned authors, those who according to me haen bnost innovative. Actually, there is
something paradoxical in looking for novelty inghew approach to mathematics, as the point of
the new trend was to observe closely what real ema#tticians actually do rather than to invent
something new about them. A tension is, howeveyitable between experiencing, in this case
experiencing mathematics, and describing the eapee. We always need to indicate what strikes
us as most important and name it, and this oftguires invention: we try to detect relations, which
may be hidden; we attempt to form a picture of tiechanism underlying the experience; and it
may happen that we become aware of the realitegsatte so obviously present as to be missed in
earlier descriptions. (See below, in this sectiexamples of each of these three categories: (i)
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hidden relations, (ii) underlying mechanisms, (@bvious features that are easily ignored.) More
generally, we never provide a completely neutrabaat of an experience or a historical process,
even if we do our best to remain neutral. Rather,present a reconstruction taking advantage of
our understanding of the situation. In the casmathematics this can be far from obvious.

Thus, Lakatos in his celebrated book [25], basegapers written in the 1960s, presented
the theory of the dialectical process of the dgwelent of mathematics from proof to refutation to
improved proof to another refutation, etc. This nwedhat proofs can be mistaken or at least
imperfect even if they are recognized as flawléBse refutation comes from the (intuitive)
mathematical background that provides potentiasifiats. By the way, Lakatos provided an
insightful rational reconstruction of the histotigaocess of proving, so this is an example of (ii)
the underlying mechanism of the mathematical eepeg, namely the process of proofs and
refutations. Also, he indicated the relation of gfeoto the environment in which they live, and
which can provide counterexamples. Lakatos intredube term “quasi-empiricism” (see his [26])
together with the claim that the methods used tabéish results in mathematics are not as
(qualitatively) different form natural sciencestasd been assumed in the received tradition in the
philosophy of mathematics. (The term “quasi-empltigvas also used by Putnam [30].)

Reuben Hersh, generally known for a beautiful papzation of mathematics — the real one,
not the logicians’ picture of it — in the book [€p-authored with Philip Davis, is another foretath
of the maverick tradition. In [16] he introducecktHistinction between the front and the back of
mathematics. This distinction, borrowed from samgital and cultural studies is, by the way, a
good example of (iii), an obvious feature that wgmred by philosophers of mathematics. Namely,
it is clear to every mathematician that official theematics, presented in publications and formal
lectures, is radically different from the tentatigforts, guesses, trials, hypotheses and mistakes
present in the mathematical kitchen. Hersh alscoeated, on many occasions, the idea that
mathematical entities are cultural creations ha@ngntersubjective reality. This cultural approach
was initiated by Raymond Wilder [43] (see also )44ut Hersh was emphasizing much more
strongly the inflexibility and objectivity of mathmatical creations, another point obvious to any
working mathematician.

Let me mention that to represent both aspectsfertrass and objectivity of mathematical
entities, and keep them as equally important | haw®duced the concept of “suprasubjective
existence” in [24]. Suprasubjective is defined @ensubjective and, at the same time, “objective
without objects.”

Rav [32] argues that many mathematical theorie® mot been axiomatized and it seems
that they will never be: any attempt to do this lgorequire far reaching changes in the theory.
Even group theory, defined by axioms of the graxges higher order methods that have little to do
with axiomatic theories. And actually there haserébeen a unique conception what axioms are”
[33, p. 125]. Independently of this, Rav [31] prepd an interesting solution to the age old problem
of whether what we do in mathematics can be chaeniaed as invention or discovery. According to
his proposal, concepts are invented and theoreendiscovered. In relation to our main topic, he
emphasized the crucial role of proofs in mathersafihey are the heart of the matter. Theorems
are only convenient expressions of what has beeamibe proved. Proofs are like bus routes and
theorems like bus stops that are established ather arbitrary way.

Cellucci, in several publications, for example #] pnd in [6], has been advocating the
concept of analytic proof that he traces back &id?while the concept of axiomatic proof, used by
Euclid, was recommended by Aristotle. Cellucci nedsi us that a mathematical work begins not
with axioms but rather with a problem. To produceamalytic proof one has to find a suitable
hypothesis that makes it possible to solve the Iprob This hypothesis must be plausible and
sufficient for a derivation of the theorem. The idation may be deductive, but this is not
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necessary. Thus the crux of the proof is to firel gbitable hypothesis. It may be a construction, a
concept, a theorem, a picture, a theory, or a ctume. The search for a right hypothesis is cdgtain
pervasive in research and this, by the way, previde example of (i), a hidden relationship
between elements of mathematical experience. Gelilaims that everything in mathematics is
hypothetical: concepts, objects, theorems. He @lms that the nature of proof in mathematics is
not essentially different from the method of ottsmiences and methods of arguing in other
situations. In [6] a comprehensive theory of knalgle is presented encompassing mathematics.

Many of the points made by the above authors amerbacause of the emphasis put on the
practice of mathematicians, and in particular thexperiences. Talking about mathematical
experience rather than mathematical reality onetsvdo emphasize the human aspect of
mathematics. The same emphasis also applies entigsis of proofs. One does not need to reject
the presence of objective, mind-independent aspettsmathematics to claim that needs,
peculiarities, and limitations of human beings md@ispensable for any account of mathematical
proofs. They must explain the matter, so some @opsychologism seems to be inevitable. (See
Krajewski [23].) Incidentally, this is another expl®m of an obvious property that is often ignored
by those who look for completely objective descapt relations between essences, etc.

A much stronger claim to the effect that mathensasca human activity and nothing more
has been made by Rotman. He is close to the viewnathematics as consisting of social
constructions (David Bloor initiated the whole schof sociological account of mathematics; see
Ernest [11]). He is, however, watching the behaefomathematicians in a very penetrating way. In
[34] Rotman introduced “a semiotic of mathematiasd pursued the issue further in [35] and [36].
What mathematicians do is described as “thinkind seribbling” performed in order to address
other mathematicians. Each mathematician is andlymgo three levels: a mathematical
disembodied Subject manipulating signs, aboveeitréal Person with a body and history, telling a
metanarrative, and below it a skeletal Agent da@algulations and constructions, also infinite ones,
in an imaginary world. A proof is seen as a thowgjpgeriment, and mathematical assertions
become predictions about the Subject’s encountihssigns.

Let me also mention some other works important tfeg new philosophical approach.
George Polya and his work [29] on non-deductiveuargnts in mathematics was as an important
source, Thomas Tymoczko’s influential anthology][A@s served as a reference, Reuben Hersh’s
anthology [19] gathered together many non-standgmtoaches to mathematics. In another vein,
the book by Stanislas Dehaene [8] on our in-boptgmathematical abilities added the neuronal
aspect, and the book Lakoff and Nuafez [27] empldsiarther the fact that our mind is embodied
and all the time we use metaphors relating to thesipal world.

All varieties of the new, maverick, approach to gidlosophy of mathematics share several
points. First, the rejection of the Euclidean mygbcording to which mathematics is fully objective,
completely universal, and absolutely certain. Sdbgra most concentrated attack has been on the
idea of the unification of mathematics within onbedry, especially on any form of
foundationalism, in particular the dominant propasahave a version of ZF set theory as the
foundation. Thirdly and more generally, any impasitof philosophically motivated standards on
mathematical activity is rejected. The genuine ficacf research mathematicians is declared to be
the starting point. This can be expressed, usiagaim of Penelope Maddy (who, however, wrote
as a foundationalist rather than a “maverick”), “agathematics first”, against the traditional
“philosophy first” (hilosophia primg& and the modern “science first.” Among the maigredients
of practice is the mathematician’s proof.
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3. Proofsas They Really Are

In real mathematics problems are proposed andigotuire sought. At the beginning of research
for proofs there are problems, not axioms. The wafrlaxiomatizing various domains is also an
example of a problem: deciding if given axioms suéficient for proving a statement is just one
more possible math problem. Below, some major featof real life proofs are listed. The proofs
must be convincing, understandable, explanatory. K@rsh [17]: “Proving is convincing and
explaining.”) Moreover, proofs are meant as vdiital, but at the same time they contain gaps and
are revisable.

3.1. Convincing

Most often proofs refer to neither axioms nor otfiest principles. Instead — as emphasized by
Lakatos, Hersh and others — they refer to estaalismathematics. Whatever is used must be
acceptable to appropriate experts. Proofs are megsén the way that makes them understandable
to experts. (Textbook proofs for students are ofteore detailed, but they are fundamentally
similar, only a more limited expertise is assumddcg aim of a proof in a research paper is to
convince experts: this category varies accordingh® context — it can mean all professional
mathematicians or, at the other end of the spectaumandful of colleagues involved in researching
the same topic. In each case a broad corpus diflisstad mathematical results is assumed as given,
its validity is not questioned. Of course, mistakegppen. They are, however, sooner or later
identified and eliminated. A subtler situation tharsimple mistake can occur: sometimes a new
understanding of concepts emerges and previoukgesa rejected or limited to special cases. This
was well illustrated by Lakatos who used the Edtemula for polyhedra. Another well-known
example, also considered by Lakatos, among margrgtis provided by Cauchy’s theorem on the
continuity of the limit of a converging sequencecohtinuous functions. Now it is considered a
mistake, because uniform convergence must be desdamather than the weaker pointwise
convergence. There exist, however, analyses indgdhe correctness of Cauchy’s theorem if
instead of the current concept of convergence othef continuum another one is assumed,
presumably one closer to Cauchy’s original undeditey. A perfect example is provided by
Robinson’s nonstandard analysis: pointwise convergen standard and nonstandard numbers is
sufficient for Cauchy’s theorem.

3.2. Understandable

Another psychological property is often assumed fmathematicians: a proof must be
understandable. For a human mathematician (are tey other?) one of the most convincing
methods of proof is by producing appropriate piesur This usually enables immediate
understanding. Sometimes the picture itself canstt the proof. Many pictorial proofs of the
Pythagorean theorem serve as examples. This sorpradf is possible for many finite
configurations, claims Giaquinto [13]; and Browr} fays that perhaps also for some infinite ones.
More than that, often a picture accompanies thentign of a proof in the mathematical “kitchen”,
to use Hersh’s term, even though it rarely findswitay to the official presentation. Even if the
matter is not geometric some visual arrangemenggitah pictures — imprecise, hazy, messy, often
moving, difficult to describe — seem to be commbimey help us understand the situation. They are
presented to other workers in the kitchen, to helgke the point, to convince and induce
understanding.
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Even when no picture is associated with the prtmfie understandable the proof must be
surveyable. Its structure should be graspable. pneferably, one must be able to tell what is its
point. While there are proofs which are not underdable, for example consisting only of
calculations, they are seen as less satisfying. snavay, the discovery of such a proof is usually
guided by some understanding. Using Rotman’s teiitngs important to be able to have a
metanarrative explaining the essence of the naeréiiat constitutes the proof. This leads us to the
next point.

3.3. Explanatory

One of the main features of proof is that it mugtlain the concepts involved, relations between
them, and show not just the truth of conclusionddsbwhythe conclusion is true. Often proofs are
not providing sufficient explanation, for instandethe crucial part consists of a calculation ared
picture or idea can be indicated as a clarificatibthe formal manipulations. In such cases a deepe
understanding of the proof is sought or other @k welcomed so that explanation can emerge.
And actually, very often new proofs are soughtxplan the aspects of the situation that seem still
hidden. Let me mention an example from my own practA long time ago | formulated a
conjecture (to the effect that a recursively saattamodel of Peano arithmetic admits a full
satisfaction class — the strict meaning of the seismot important here) that was soon demonstrated
in collaboration with two colleagues and publishiedotlarski, Krajewski and Lachlan [22]. The
proof was rather indirect, using a proof theor@éichnique. Many years later, long after | had
stopped working in this area, Enayat and Visserf¢@hulated another proof, much more natural,
since it uses only model theoretic constructionsd Aecently, in 2020, James Schmerl, in the yet
unpublished paper “Kernels, Truth and Satisfactitmpk the model theoretic proof, and showed
that if “stripped to its essentials,” it can be egsed as a special property (the existence of a
kernel) of certain directed graphs. Thus the tezdinproblem in the proof was reduced to graph
theory. The specific logical notions of satisfantionodels, etc. were invoked only as an application
of an abstract graph theorem.

Even this modest example illustrates a generaltpiiis accepted and common to look for
a proof by taking advantage of other branches dhematics than the one in which the problem is
formulated. A famous example is provided by Fersafist Theorem. Also merging methods and
concepts of various branches is seen as valualeexample probabilistic methods are used in
various ways even if probability was not mentionedhe initial problem. New branches were
created when similarities of constructions in digfet parts of mathematics were noticed and
properly defined. Or, as a well-known saying gagsyd mathematicians perceive analogies, and
the best see analogies between analogies. Catiégpamy is a good example.

It is also important to remember that there exasttative proofs or proofs produced by
doubtful methods, for example by analogy. A famexample is provided by Euler’s calculations
of some infinite sums. He used infinite polynomiatsif they had properties similar to the finite
cases. In this way he calculated the sum of thieserf the reciprocals of the squares of natural
numbers as equal t6f/6. (See Polya [29, p. 20], or, for example, Putjafi.) Of course, Euler
was aware that his proof was not certain, but wihertalculated the initial segment of the series
and found it coincide with the proposed numbertapgome decimal position, he was convinced
that the result was true and the proof fundamentalirect. Later he found a more standard proof.

All the above examples indicate how natural andrdeke it is for mathematicians to use
unanticipated methods. In other words, proofs candyy far from being pure. Rather, anything is
accepted as long as it leads to the aim of decitiegproblem one way or another. The idea
advocated by logicians that there is an establisredework, language, axioms, and proofs are
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supposed to be conducted within the frameworkjngly not true in living mathematics. On the
other hand, there is an attractive element toitlga, and actually finding a pure proof of a major
theorem established by extrinsic methods is seea @suable achievement. To introduce some
“purity” one can also formulate a comprehensiveotfien which all the methods used to solve the
problem are expressible. One can also try to rénactshe whole proof in set-theoretical language.
Such moves are, however, alien to an overwhelmiagpmty of mathematicians. And even if the
proof can be reconstructed, it can no more be asimoing, understandable, explanatory as the
original argument. | believe that the explanatooyver is felt as the single most important feature
of proof.

3.4. Revisable

The above-mentioned two examples, Euler's formwla dolyhedra and Cauchy’s theorem on
continuity of the limit of continuous functions,®hk that proofs are revisable. This is not something
mathematicians usually accept. When is a proof ssegood, proper, correct, worth its name? To
guote Epstein [10, p. 137] proofs “are meant tovakd.” That is to say, it is impossible for the
conclusion to be false if the assumptions are fftae. proof is supposed to show that something is a
fact. Yet new evidence may emerge and the finalitthe proof might turn out to be illusory. This
possibility is emphasized by all champions of rieverick philosophy of mathematics. How is this
possible?

One reason for the collapse of a proof is dueh® possibility of changes in our
understanding of the concepts used in a prooti{efconcept of polyhedron). Another reason is due
to changes in the standards of rigor (cf. Euleddcwation of the sum of the series of the
reciprocals of the squares of natural numbers).aviether reason is due to the chance of errors that
keep popping up. While, as mentioned above, ieisegally believed that errors can be ultimately
overcome, the more complex the arguments the mareaple are either mistakes in proofs or
omissions that can be threatening. Some importgamples have appeared rather recently, for
example enormously long proofs, like the classifaraof all finite groups that has been achieved
by a long collective process involving many matheoens. There were leaders of the effort, but it
seems that nobody has checked the whole proof, {(&eexample, Byers [3].) Still it is believed
that the job has been done. It is not impossiblaygh, that something has been overlooked.

Another important kind of example emerged when oatens began to be used in
mathematics. There exist proofs partly executeddiyputers. The four color theorem is the best-
known example. (See Tymoczko [39]; it was the fpbktlosophical analysis of computer-assisted
proofs.) The possibility of error contained in ti@rdware used is a new source of uncertainty. Yet,
repeating the proof on other machines very sigaiily reduces the chance error. It is probable that
the chance human proofs contain errors is higher.

In addition to computer-assisted proofs there apbabilistic proofs. Using it one can prove
that a very large number is prime but the proofcpdure uses several random moves and is so
conceived that it gives the result (that the gimamber is prime) only with a very high probability.

If the chance of error is less than fave can be pretty sure that the result is cor(&ge, for
example, Rav [32] for more details and referenogbe papers, from the 1970s, by Michael Rabin
and by Robert Solovay and Volken Strassen.)

This last example gives a proof that there lasea fidemathematical proofs that lead to
conclusions that are not certain. The claim of “tmavericks” is that all proofs share this
characteristic. This applies even to most formasorAs indicated by Cellucci and also by Friend
[12, p. 207] even formalized proofs can have “exdé gaps”. These are gaps residing in the
external context of proof, specifically in the jéisation for an axiom or rule of inference. We ¢ak
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it for granted because we assume a standard iataetjpn. Yet a non-standard interpretation can
appear, even of a logical symbol or of a basic ephtike that of a set. Then some of the obvious
properties may no longer be true. Think of the lafvexcluded middle which is rejected by
constructivists or of the concept of set as defimga set theory other than ZFC.

4. Conclusion

There is a whole spectrum of the views on the eatirmathematical proofs. An extreme position
was expressed by Hardy: there is no such thingmed, “we can, in the last analysis, do nothing
but point,” so there are only rhetorical “devicesstimulate the imagination of the pupils” [14, p.
18]. The other extreme is expressed by Hilbert'ssi$t real proofs are abbreviations and
approximations of the ideal formal proofs. Hersloterthat the belief in the Thesis “is an act of
faith” [17, p. 391]. Logicians tend to believe their evidence is inductive: so much has been
formalized that it seems that we can never encountirmountable obstacles if we try hard
enough. The point illustrated by the consideratiomstained in this paper is that even if this is th
case and in principle we can convert each proof @atormal one, this is not really significant. The
most important features of real proofs — their gatonvincing, understandable, explanatory — are
lost in the process. And the reasons for revidgbdre not present within the formal proof. The
maverick philosophy of mathematics has succeedeeximbiting the whole range of problems
related to Hilbert's Thesis. The debate on the ipdgg and significance of formalizability of
proofs continues.
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Abstract

In this paper, the theory of necessity proposedRbigert Grosseteste is
presented. After showing the wide range of variokinds of
determination discussed by him (connected with: d¢’s knowledge
about the future, (2) predestination, (3) fate, ¢dace, (5) sin and
temptation), a different context of Grossetestese wf the notion of
necessity is analyzed (within logical and metaptglsapproaches). At
the heart of his theory lie: the definition of nss#y, which is that
something lacks the capacityossé for its opposite, and the distinction
between two perspectives within which we can carsitecessity: (1)
the one according to which the truthfulness di@umdetermines that it
cannot be the opposite, (2) a pre- or atemporal andéf something had
not yet begun. On these grounds, Robert explaatsGbd’s omniscience
is compatible with contingency, including humarefaecisions. Robert’s
theory is still relevant and useful in contemporalgbates, as it can
provide strong arguments and enrich discussioremkth to the two-
perspectives approach, which generates nine kihgssitions on the
spectrum of determinism and indeterminism.

Keywords necessity, contingency, determination, God’s @tience,
future contingents, Robert Grosseteste, Jan tgkie

1. Introduction

The concepts of necessity and determinism belonthdse philosophical problems which
seem to be “immortal”: they are discussed by sulbseiggenerations of thinkers, and it is
highly likely that they will keep coming back, ingpg philosophers to reconsider them and
formulate new insights. Professor Jan Wele is one of those philosophers who have made
successful attempts at discussing these issueprasdnting them as clearly as possible. He
has accomplished this task both in the contexhefproblem of free will [27] and within his
analysis concerning the topic of the determinabbth